

Key Comparison CCQM-K127 "Contaminant and other elements in soil"

Final Report

Authors:

M. Rocio Arvizu Torres, J. Velina Lara Manzano, Edith Valle Moya (CENAM)¹, Milena Horvat, Radojko Jaćimović, Tea Zuliani, Polona Vreča (JSI)², Osvaldo Acosta (INTI)³, John Bennet (ANSTO)⁴, James Snell (IRMM)⁵, Marcelo D. Almeida, Rodrigo C de Sena, Emily S. Dutra (INMETRO)⁶, Lu Yang (NRC)⁷, Haifeng Li, Jingbo Chao (NIM)⁸, Paola Fisicaro, Labarraque Guillaume (LNE)⁹, Michael H.P. Yau, Wai-hong Fung (GLHK)¹⁰, Shankar G. Aggarwal, Daya Soni (CSIR-NPLI)¹¹, Shin-ichi Miyashita (NMIJ)¹², Christian Uribe (INACAL)¹³, Mirella Buzoianu (INM)¹⁴, Leonid Konopelko (VNIIM)¹⁵, Maré Linsky (NMISA)¹⁶, Oktay Cankur, Suleyman Z. Can (TUBITAK UME)¹⁷, Michael Winchester, Savelas A. Rabb, Karen E. Murphy, George C. Caceres (NIST)¹⁸, Tom Oduor Okumu (KEBS)¹⁹

CCQM-K127 Participants:

- ¹ Centro Nacional de Metrologia (CENAM), Mexico
- ² Jožef Stefan Institute (JSI), Slovenia
- ³ Instituto Nacional de Tecnología Industrial (INTI), Argentina
- ⁴ Australian Nuclear Science and Technology Organisation (ANSTO), Australia
- ⁵ Institute for Reference Materials and Measurements (IRMM), Belgium
- ⁶ Instituto Nacional de Metrologia. Qualidade e Tecnologia (INMETRO), Brazil
- ⁷ National Research Council Canada (NRC), Canada
- ⁸ National Institute of Metrology (NIM), P.R. China
- ⁹ Laboratoire National de Métrologie et D'essais (LNE), France
- ¹⁰ Government Laboratory (GLHK), Hong Kong, China
- ¹¹ National Physical Laboratory (CSIR-NPLI), India
- ¹² National Metrology Institute of Japan (NMIJ), Japan
- ¹³ Instituto Nacional de Calidad (INACAL), Peru
- ¹⁴ National Metrology Institute (INM), Romania
- ¹⁵ Mendeleyev Institute for Metrology (VNIIM), Russia
- ¹⁶ National Metrology Institute of South Africa (NMISA), South Africa
- ¹⁷ TUBITAK Ulusal Metroloji Enstitisu (TUBITAK UME), Turkey
- ¹⁸ National Institute of Standards and Technology (NIST), USA
- ¹⁹ Kenya Bureau of Standards (KEBS), Kenia

February, 2017

1. Introduction

Non-contaminated soils contain trace and major elements at levels representing geochemical background of the region. The main sources of elements as contaminants/pollutants in soils are mining and smelting activities, fossil fuel combustion, agricultural practices, industrial activities and waste disposal. Contaminated/polluted sites are of great concern and represent serious environmental, health and economic problems. Characterization and identification of contaminated land is the first step in risk assessment and remediation activities. It is well known that soil is a complex matrix with huge variation locally and worldwide. Consequently, despite the available reference materials (RM) certified for trace and major elements in soils, there is still a lack of concentration and matrix-matched soils RM at testing and calibration levels.

According to the IAWG's five year plan, it is recommended to have a key comparison under the measurement service category of soils and sediments for the year 2015. Currently 13 NMI has claimed CMCs in Category 13: 29 CMCs in soil and 96 CMCs in sediments. In this regard this is a follow-up comparison in the category 13; wherein three key comparisons have been carried out during the years 2000 (CCQM-K13), 2003 (CCQM-K28) and 2004 (CCQM-K44).

Since it is important to update the capabilities of NMIs in this category, at the CCQM-IAWG meeting held in April 2014, CENAM and JSI proposed a key comparison in this category and a pilot study in parallel. The proposed study was agreed by IAWG members, where two soils samples were used in both CCQM-K127 and CCQM-P162 representing a noncontaminated soil with low concentrations of elements (Arsenic, Cadmium, Iron, Lead and Manganese), and a contaminated soil with much higher concentration of selected elements (Arsenic, Cadmium, Iron and Lead). This broadens the scope and a degree of complexity of earlier measurements in this field. National metrology institutes (NMIs)/designate institutes (DIs) should, therefore, demonstrate their measurement capabilities of trace and major elements in a wide concentration ranges, representing background/reference sites as well as highly contaminated soils by their available analytical methods. This facilitate to investigate the core capabilities of participants to measure the mass fraction of tested elements in soil and therefore to claim their Calibration and Measurement Capabilities as listed in Appendix C of the Key Comparison Database (KCDB) under the Mutual Recognition Arrangement of the International Committee for Weights and Measures (CIPM MRA). Participants are requested to complete the Inorganic Core Capabilities Tables as a means of providing evidence for their CMC claims.

2. Participating Institutes

Totally 19 institutes registered in the Key Comparison CCQM-K127. Table 1 lists the participating NMIs in alphabetic order of the countries' names of participating NMIs/DIs.

Table 1. List of participating NMIs/DIs for CCQM-K127.

				Measurand			
No.	NMI	Country	Contact person	Non-Contaminated Soil	Contaminated Soil		
1	INTI Instituto Nacional de Tecnología Industrial	Argentina	Lic. Osvaldo Acosta	As, Cd, Fe Pb, Mn	As, Cd, Fe, Pb		
2	ANSTO Australian Nuclear Science and Technology Organisation	Australia	Dr. John Bennet	As, Fe, Mn	As, Cd, Fe		
3	IRMM Institute for Reference Materials and Measurements	Belgium	Dr. James Snell	As, Cd, Fe, Pb, Mn	As, Cd, Fe, Pb		
4	INMETRO Instituto Nacional de Metrologia. Qualidade e Tecnologia	Brazil	Dr. Marcelo D. Almeida, Dr. Thiago O. Araujo	As, Fe, Pb, Mn	As, Cd, Fe, Pb		
5	NRC-CNRC National Research Council Canada	Canada	Dr. Lu Yang	As, Cd, Fe Pb, Mn	As, Cd, Fe, Pb		
6	LNE Laboratoire national de métrologie et d'essais	France	Dr. Labarraque Guillaume	As, Cd, Fe Pb, Mn	As, Cd, Fe, Pb		
7	GLHK Government Laboratory Hong Kong	Hong Kong, China	Dr. Michael H.P. Yau, Dr. Wai-hong Fung	As, Cd, Fe Pb, Mn	As, Cd, Fe, Pb		
8	CSIR-NPLI National Physical Laboratory	India	Dr. Shankar G. Aggarwal, Dr. Daya Soni	-	As, Cd, Fe, Pb		
9	NMIJ National Metrology Institute of Japan	Japan	Dr. Shin-ichi Miyashita	As, Cd, Fe Pb, Mn	As, Cd, Fe, Pb		
10	KEBS Kenya Bureau of Standards	Kenya	Mr. Tom Oduor Okumu	-	-		
11	CENAM Centro Nacional de Metrologia	Mexico	Mrs. J. Velina Lara Manzano M. Sc. M. Rocio Arvizu Torres	As, Cd, Fe Pb, Mn	As, Cd, Fe, Pb		
12	INACAL Instituto Nacional de Calidad	Peru	Christian Uribe	As, Cd, Fe, Pb, Mn	As, Cd, Fe, Pb		
13	NIM National Institute of Metrology	P.R. China	Dr. Haifeng Li, Dr. Jingbo Chao	As, Cd, Mn	As, Cd, Fe, Pb		
14	INM National Metrology Institute	Romania	Dr. Mirella Buzoianu	As, Cd, Fe, Pb, Mn	As, Cd, Fe, Pb		

				Measurand			
No.	NMI	Country Contact person		Non-Contaminated Soil	Contaminated Soil		
15	VNIIM D.I. Mendeleyev Institute for Metrology	Russia	Prof. Leonid Konopelko	As, Cd, Fe, Pb, Mn	As, Cd, Fe, Pb		
16	JSI Jožef Stefan Institute	Slovenia	Prof. Dr. Milena Horvat	As, Cd, Fe, Pb, Mn	As, Cd, Fe, Pb		
17	NMISA National Metrology Institute of South Africa	South Africa	Dr. Maré Linsky	As, Cd, Fe, Pb, Mn	As, Cd, Fe, Pb		
18	TUBITAK UME TUBITAK Ulusal Metroloji Enstitisu	Turkey	Dr. Suleyman Z. Can	As, Cd, Fe, Pb, Mn	As, Cd, Fe, Pb		
19	NIST National Institute of Standards and Technology	United States	Dr. Michael Winchester	Cd, Fe, Pb, Mn	Cd, Fe, Pb		

Remarks: KEBS was not able to submit their results because of transfer of laboratory equipment. CSIR-NPLI did not submit results because of instrumental problem. Also some institutes did not sent results for non-contaminated soil, and for As, Cd, Fe.

3. Samples and Instruction to Participants

3.1. Soil samples

Two soils samples were used in both CCQM-K127 and CCQM-P162, representing a noncontaminated soil with low concentrations of elements (Arsenic, Cadmium, Iron, Lead and Manganese), and a contaminated soil with much higher concentration of selected elements (Arsenic, Cadmium, Iron and Lead).

<u>Non-contaminated soil</u> sample was prepared by JSI. Soil was collected from a natural grassland and is characterized as eutric cambisol on gravel and sand. The sample was prepared according to ISO 11464:2006, Soil quality - Pretreatment of samples for physic-chemical analysis. A fraction bellow 250 μ m was finally homogenized for 60 h in ball drum. After homogeneity testing for 5 elements, the soils were bottled into 40 mL amber vials containing 20 g of soil each. The samples are stored at room temperature (20 ± 2) °C before shipment.

<u>Contaminated soil</u> sample was prepared by CENAM. The contaminated sandy soil of rhyolitic origin was collected from an industrial area, near to an abandoned mining industry, just before their remediation process. It was characterized for total contents of the metals proposed. The soil batch was processed according to the ISO Guide 34:2009 General requirements for the competence of reference material producers. The soil was homogenized using a homogenizer drum with three dimensions for 3 hours, and also in a sampler splitter of 10 positions, and then packaged with 60 g of soil with a particle size in the range between (75 - 90) μ m, contained in an amber borosilicate glass bottle and packed in a vacuum double bag, the first was striated polyethylene bag and the second (outer) in a polyethylene terephthalate bag (Maylar®). The samples are stored at room temperature (20 to 25) °C before shipment.

3.2. Homogeneity and stability study

The homogeneity study for <u>non-contaminated soil</u> sample was conducted after the testing material was bottled and irradiated. The study was carried out with sample size of 0.25 g and 10 bottles which were analysed in triplicate. For this purpose, ICP-QMS was applied for the determination of Mn, Fe, As and Pb, while ET-AAS was applied for the determination of Cd, as shown in Table 2 after microwave assisted digestion. In addition, k_0 -INAA was applied for the determination of Fe and As, where 10 bottles were analysed in duplicate.

The homogeneity study for <u>contaminated soil</u> sample was conducted after the testing material was bottled and irradiated. Stratified random sampling of 20 bottles was done, and three test portions of 0.5 g were taken from each bottle for analysis. The test portions were digested using microwave assisted digestion method. The digested samples and reagent blanks were analysed using internal standard and standard addition method with ICP-AES for Cd and Fe, and using internal standard and standard addition method with ICP-QQQMS using the reaction cell for As and Pb, as is shown in Table 3.

The statistical technique analysis of variance was applied to assess the between-bottle heterogeneity. The standard uncertainty originated from between bottles heterogeneity u_{bb} was calculated using the equation (1) in accordance with ISO Guide 35:2006 [1]

$$u_{bb} = \sqrt{\frac{MS_{within}}{n}} \cdot \sqrt{\frac{2}{\nu_{MS_{within}}}}$$
(1)

where

u_{bb} Uncertainty originated from between bottles heterogeneity.*MS*_{within} Mean square (ANOVA) of within bottles.

 $\mathcal{V}_{MS_{maximum}}$ Degree of freedom of mean square of within bottles.

n Number of replicates (samples per bottle).

Table 2. Summary of homogeneity study results for non-contaminated soil.

Element	ANOV hetero	A test on ogeneity	Between-bottle	Analytical method Internal standard	
Element	F	$F_{ m critical value}$	$u_{\rm bb}$ (%)		
Mn	1.00	2.46	0.50	ICP-QMS	
Fe	2.24	2.46	0.60	ICP-QMS	
As	1.54	2.46	0.85	ICP-QMS	
Pb	2.44	2.46	0.50	ICP-QMS	
Cd	1.73	2.46	0.80	ET-AAS	

Note: ANOVA single factor test was applied for Fe and As results obtained by k_0 -INAA (10 bottles were analysed in duplicate) and uncertainty originated from between bottles heterogeneity (u_{bb}) for Fe = 0.18 % and As = 0.22 % was obtained.

Element	ANOV hetero	A test on ogeneity	Between-bottle	Analytical method Internal standard	
Liement	F	$F_{\rm critical value}$	$u_{\rm bb}$ (%)		
Cd	0.44	1.85	0.37	ICP-OES	
Fe	0.74	1.85	0.43	ICP-OES	
As	1.27	1.85	0.82	ICP-QQQMS mode O ₂ (⁷⁵ As ¹⁶ O ⁺ / ⁷¹ Ga ⁺)	
As	0.86	1.85	0.29	ICP-QQQMS mode H ₂ (⁷⁵ As ⁺ /Ga ⁺)	
Pb	1.23	1.85	0.78	ICP-QQQMS mode No gas (²⁰⁸ Pb ⁺ / ²⁰⁹ Bi ⁺)	
Pb	1.47	1.85	0.77	ICP-QQQMS mode No gas (²⁰⁶ Pb ⁺ / ²⁰⁹ Bi ⁺)	

Table 3	Summary	v of homoc	neneity stuc	ly results fo	r contaminated	soil
I able 5.	Summary		Jenency Sluc	iy results io	i comaninateu	5011.

The homogeneity study results reported in Tables 2 and 3 show that no significant heterogeneity was observed in the non-contaminated and contaminated soil. The test material was considered fit for purpose of this comparison.

For stability study of <u>non-contaminated soil</u>, the samples were sterilized by Co-60 irradiation at a dose between (18 - 24) kGy. The samples are stored at room temperature (20 ± 2) °C before shipment.

For stability purposes of <u>contaminated soil</u>, the batch was irradiated with Co-60 at a dose between (17 - 22) kGy for microbiological control and bottled. A microbiological study was conducted and non-significant presence of microorganisms was observed. The samples are stored at room temperature (20 to 25) °C before shipment.

Long-term and short-term stability studies were conducted. The long-term stability is associated with the behaviour of the test material under storage in participating laboratories while the short-term stability studies aimed to show the stability of the material during its transport. The long-term stability was conducted at 20 °C covering the period from the distribution of test material to the deadline for submission of results. The short-term stability was conducted at 40 °C and 50 °C over a 4-week period (sampling points: 1 week, 2 weeks and 4 weeks). All samples of <u>contaminated soil</u> were digested using the microwave assisted digestion method, then the digested samples and reagent blanks were analysed using internal standard and standard addition method with ICP-SFMS. For Cd, Fe and Pb medium resolution mode was applied; for As high resolution mode was used. For samples of <u>non-contaminated soil</u>, the samples were also digested using the microwave assisted digestion method and then ICP-QMS (As, Fe, Mn and Pb) and ET-AAS (Cd) were applied.

The trend-analysis technique proposed by ISO Guide 35:2006 [1] was used to assess the stability of the test material at 20 °C, 40 °C and 50 °C. The basic model for the stability study is expressed as the equation (2).

$$Y = \beta_0 + \beta_I X + \varepsilon \tag{2}$$

Where β_0 and β_1 are the regression coefficients, and ε denotes the random error component. With appropriate *t*-factors, β_1 can be tested for significance of deviation from zero. The Tables 4 and 5 summarize the results for each element of the stability studies tested at 20 °C, 40 °C and 50 °C respectively.

Element	<i>p</i> value	for signitest for β	ficance	b	Analytical method Internal standard		
	20 °C	40 °C	50 °C	20 °C	40 °C	50 °C	
Cd	0.449	0.470	0.662	4.2 < 45	2.6 < 30	1.6 < 34	ICP-SFMS MR (¹¹⁴ Cd/ ¹⁰³ Rh)
Fe	0.363	0.859	0.967	157 < 1285	46 < 2599	14 < 3522	ICP-SFMS MR (⁵⁶ Fe/ ⁴⁵ Sc)
As	0.899	0.951	0.899	0.05 < 4.2	0.03 < 4.8	0.05 < 4.0	ICP-SFMS HR (⁷⁵ As/ ⁷¹ Ga)
Pb	0.815	0.789	0.725	0.53 < 22	0.60 < 22	0.52 < 14	ICP-SFMS MR (²⁰⁸ Pb/ ²⁰⁹ Bi)

	Table 4. Summar	v of stabilitv	/ studv	results for	contaminated soil.
--	-----------------	----------------	---------	-------------	--------------------

Element	p value	e for signi test for β	ficance	b	Analytical method Internal standard		
	20 °C	40 °C	50 °C	20 °C	40 °C	50 °C	
Cd	0.230	0.524	0.887	0.00015 < 0.00039	0.0006 < 0.0083	0.0002 < 0.0137	ET-AAS
Fe	0.525	0.627	0.772	0.0036 < 0.0205	0.033 < 0.629	0.026 < 0.896	ICP-QMS
As	0.067	0.731	0.265	0.00095 < 0.00111	0.035 < 0.990	0.073 < 0.409	ICP-QMS
Pb	0.834	0.906	0.212	0.0012 < 0.0216	0.011 < 0.975	0.107 < 0.472	ICP-QMS
Mn	0.898	0.596	0.546	0.073 < 2.175	2.6 < 45.6	0.43 < 6.29	ICP-QMS

Table 5. Summary of stability study results for non-contaminated soil.

All *p*-values were found greater than 0.05, then it was concluded that the corresponding β_I value was not significantly deviated from zero at 95% level of confidence; then, no instability was observed for the test material at 20 °C, 40 °C and 50 °C during the testing period. The test material was considered fit for the purpose of this comparison.

In addition, JSI repeated determination of As, Fe, Mn and Cd using k_0 -INAA and TRIGA Mark II (250 kW) research reactor in the studied bottles of non-contaminated soil (bottle No. 28) and contaminated soil (bottle No. 75) in August 2016. JSI reported for CCQM-K127 dry mass factor for non-contaminated soil 1.0358 and for contaminated soil 1.0294 (both measured in April 2015). Determination of dry mass factor in August 2016 shows the results as follows: 1.0324 for non-contaminated soil and 1.0273 for contaminated soil. From the data can be concluded that the sample has good stability. The results obtained by k_0 -INAA

for As, Fe, Mn and Cd are given in Tables 6 and 7. Good agreement between the reported and recently obtained data can be observed.

EI	Measure	Measured in October 2015				ed in Aug	gust 201	6	Diff.	Note
	Xi	<i>u</i> _c	<i>u</i> c, %	n	Xi	<i>u</i> _c	<i>u</i> _c , %	n		
As (mg/kg)	14.18	0.43	3.03	7	14.05	0.43	3.08	3	-0.91%	HPGe: CA5*
Fe (g/kg)	34.25	0.86	2.51	7	33.78	0.85	2.50	3	-1.37%	HPGe: CA5*
Mn (mg/kg)	1194	36	3.02	7	1198	36	3.03	3	0.33%	HPGe: CA5*

Table 6. Comparison of CCQM-K127 data for non-contaminated soil obtained by k₀-INAA

Note: * - HPGe detector CA5 (45%) with CA5B absolute calibration was used in both studies

El	Measure	ed in Octo	ober 201	Measured in August 2016				Diff.	Note	
	Xi	u_c	<i>u</i> c, %	n	Xi	u_c	<i>u</i> c, %	n		
As (mg/kg)	79.5	2.4	3.02	7	78.8	2.4	3.06	3	-0.88%	HPGe: CA6*
Cd (mg/kg)	446	16	3.59	7	452	16	3.51	3	1.34%	HPGe: CA6*
Fe (g/kg)	21.14	0.53	2.51	7	20.85	0.52	2.50	3	-1.36%	HPGe: CA6*

Table 7. Comparison of CCQM-K127 data for contaminated soil obtained by k₀-INAA

Note: * - HPGe detector CA6 (40%) with CA6B absolute calibration was used to obtain results in October 2015, while recently absolute calibration of the same detector (CA6C, August 2016) was used in this work

3.3. Instruction to participants

The participants were encouraged to use any method of their choice for the measurement of total contents of elements in soil samples. It was suggested to mix the sample thoroughly before processing and to analyse the soil samples with a minimum portion of 0.5 g for contaminated soil and 0.25 g for non-contaminated soil. The technical protocol and example of the reporting forms used in this study are shown in Appendix I.

Participants were requested to perform independent measurements on at least five separate portions of the sample and to determine the total mass fractions of the analytes of interest. It was recommended that the preparation and dilution of solutions be carried out by weighing. Measurement results of elements in the soil samples should be dry mass corrected.

For both soil samples, and for the determination of dry mass correction factor a minimum of three separate portions with size of about 1 g each was recommended. Also, it was recommended to dry the soil in a ventilated oven at a temperature of (105 ± 2) °C for minimum 2 hours. Then weight and repeat drying until constant mass is attained (as recommendation: successive weights should not different more than 1 mg). The loss of mass corresponded to the correction that should be applied as dry mass correction. It was advisable to perform this procedure at the same time when weighing the soil samples for the measurements of the measurands.

The participants were requested to provide values for each subsample and the mean value of at least five independent separate portions of sample (subsamples) and its associated measurement uncertainty shall be reported on a dry mass basis. Also, if any participant that chooses to use multiple methods, all results from different methods could be reported, but it was required to report only one composite result (e.g., an average value from different methods).

Participants were asked to provide all the necessary information about their analytical methods, including the sample dissolution, calibration methods and certified reference materials used for calibration purpose and their source of traceability. In addition, complete specification of the measurement equations, details of the uncertainty estimation including the individual sources of uncertainty; the core capability tables, which form part of the key comparison report, in Appendix II is shown the summary of the core capability tables reported.

4. Methods of Measurement

The measurement methods were left free to be selected by the participant institutes. The analytical techniques ICP-MS, ICP-OES, FAAS, ET-AAS and INAA were widely used by the participants. The sample preparation methods used were based on microwave assisted digestion, except when it was used INAA. Two institutes (JSI and NIM) submitted results by two methods for several measurands. The principle method (used in the KCRV calculation) for these analytes was identified as ICP-MS by JSI except for Fe in contaminated soil and as ICP-MS or ID-ICP-MS by NIM. The alternative methods were k_0 -INAA (JSI) and ICP-OES (NIM). These alternative methods are indicated as such in Table 8. The results obtained by the alternative methods were provided as information values and this is indicated in the relevant tables of results.

Institute	Sample	Analyte	Sample preparation/Dig estion procedure	Calibration method	Analytical instrument	Reference material used for calibration (Traceability)
ANSTO	Non- contaminated soil	As, Fe, Mn	Weighing into polyethylene capsules only	k₀ method	As, Cd, Fe, Mn: k ₀ -NAA	As, Fe: Au (IRMM-530RC) Mn: Au (NIST SRM 3121)
	Contaminated soil	As, Cd, Fe				
CENAM	Non- contaminated soil	As, Cd, Fe, Mn, Pb	Microwave- assisted digestion: As, Cd, Fe, Pb for ICP-SFMS (HCI/HNO ₃ /HF/H ₂ O ₂ /H ₃ BO ₃) As, Pb for ICP- AES and EAA- HG	As, Mn: Internal standard with single point standard addition Cd, Fe, Pb: Exact matching double ID- ICP-SFMS	As, Mn: High resolution ICP-SFMS Cd: Low resolution ICP-SFMS Fe, Pb: Medium resolution ICP-SFMS	As: Reference material used for calibration SRM 3103 arsenic; for internal standard SRM-3119 Gallium Cd: Reference material used for calibration DMR-461a cadmium; the enriched isotope used was the ¹¹¹ Cd Fe: Reference material used for calibration CAL-620-67 iron; the enriched isotope used was the

Table 8. Summary of methods of measurement used by the participants

Institute	Sample	Analyte	Sample preparation/Dig estion procedure	Calibration method	Analytical instrument	Reference material used for calibration (Traceability)
	Contaminated soil	As, Cd, Fe, Pb	(HCI/HNO ₃ /HF/H ₂ O ₂) Cd, Fe, Pb: anion exchange separation method	As, Pb: Internal standard with single point standard addition As: External calibration with single point standard addition Cd, Fe, Pb: Exact matching double ID- ICP-SFMS	As: High resolution ICP-SFMS; HG- EAA/ICP-AES Cd: Low resolution ICP-SFMS Fe, Pb: Medium resolution ICP-SFMS Pb: ICP-AES	⁵⁷ Fe Pb: Reference material used for calibration DMR-463a lead; the enriched isotope used was the SRM-991 ²⁰⁶ Pb Mn: Reference material used for calibration DMR-123 manganese; for internal standard High Purity (HP) Germanium
CSIR- NPLI	Non- contaminated soil	N/A	N/A	N/A	N/A	N/A
	Contaminated soil	As, Cd, Fe, Pb	Microwave- assisted digestion (HCI/HNO ₃ /HF)	As, Cd, Pb: External Calibration Fe: External Calibration (Bracketing)	ICP-OES	As: NPLI traceable CRM; BND 33.100.01 Pb: NPLI traceable CRM; BND 82.100.01 Cd, Pb: NIST traceable CRM
GLHK	Non- contaminated soil	As, Cd, Fe, Mn, Pb	Microwave- assisted digestion (HNO ₃ /H ₂ O ₂ /HF)	Gravimetric Standard Addition	As, Cd, Pb: ICP-MS Fe, Mn: ICP-OES	As: NIST SRM 3103a; NIST SRM 2709a; NRCC PACS-3 Cd: NIST SRM 3108; NIST SRM 2709a; NRCC PACS-3 Fe: NIST SRM 3126a; NIST SRM 3126a; NIST
	Contaminated soil	As, Cd, Fe, Pb				Pb: NIST SRM 3128; NIST SRM 2709a; NRCC PACS-3 Mn: NIST SRM 3132; NIST SRM 2709a; NRCC PACS-3
INACAL	Non- contaminated soil	As, Cd, Fe, Mn, Pb	EPA Method 3052: Microwave assisted acid digestion of	Standard addition	As, Cd, Pb: ET-AAS Fe, Mn: FAAS	As: SRM 3103a, SRM 2711a Cd: SRM 3108, SRM 2711a Fe: SRM 3126a, SRM 2711a Pb: SRM 3128, SRM 2711a
	Contaminated soil	As, Cd, Fe, Pb	siliceous and organically based matrices		As, Pb: ET-AAS Cd. Fe [:] FAAS	Mn: SRM 3132, SRM 2711a
INTI	Non- contaminated soil	As, Cd, Fe, Mn, Pb	Microwave oven digestion (HNO ₃ /HF)	Standard addition	As, Cd, Pb: ICP-MS Fe, Mn ⁻	NIST, Fluka, SRM-2781 Domestic sludge.
	soil	Fe, Pb			ICP-OES	
INM	Non- contaminated soil	As, Cd, Fe, Mn, Pb	Microwave digestion (HNO ₃ /HCI/HF)	bracketing method	As, Cd, Pb: ICP-MS Fe, Mn: FAAS	Fe: ERMO-CC141 Loam Soil, Valid until 15.05.2016; SRM NIST 3126a, lot 051031 Pb: SRM NIST 3128, lot 030721
	Contaminated soil	As, Cd, Fe, Pb			As, Cd, Fe, Pb: FAAS	Mn: SRM NIST 3132, lot 030721 Cd: SRM NIST 3108, lot 130116 As: Arsenic Standard for AAS, TraceCERT, Lot BCBL3830V
INMETRO	Non- contaminated soil	As, Fe, Mn, Pb	Microwave digestion (HF/HNO ₃ /H ₂ O ₂)	External Standard Calibration	As: ICP-MS Fe, Pb, Mn: ICP-OES (Plasma operated under	As: Calibration: SRM 3103a (NIST); Quality Control: SRM 2782 (NIST) and SRM 2586 (NIST)

Institute	Sample	Analyte	Sample preparation/Dig estion procedure	Calibration method	Analytical instrument	Reference material used for calibration (Traceability)
	Contaminated soil	As, Cd, Fe, Pb			robust conditions) As, Cd, Fe, Pb: CP-OES (Plasma operated under robust conditions)	Fe: Calibration: SRM 3126a (NIST); Quality Control: SRM 2586 (NIST) Pb: Calibration: SRM 3128 (NIST); Quality Control: SRM 2782 (NIST) and SRM 2586 (NIST) Mn: Calibration: SRM 3132 (NIST); Quality Control: SRM 2782 (NIST) and SRM 2586 (NIST) Cd: Calibration: SRM 3108
IRMM	Non- contaminated soil Contaminated soil	As, Cd, Fe, Mn, Pb As, Cd, Fe, Pb	Digested in a Milestone Ultraclave (HNO ₃ /HF)	As: External with 2 bracketing standards, linear calibration Cd, Pb: ID Fe, Mn: External with 6 standards	As, Fe, Mn: ICP-OES Cd, Pb: ICP-MS	(NIST) As: Merck Certipur 1000 mg/L As standard Cd: IRMM-622 Fe: Merck Certipur 1000 mg/L Fe standard Pb: Inorganic Ventures 10 mg/L ²⁰⁶ Pb, NIST997 Mn: Merck Certipur 1000 mg/L Mn standard
JSI	Non- contaminated soil Contaminated soil	As, Cd, Fe, Pb, Mn As, Cd, Pb	Microwave- assisted digestion (HNO ₃ /HCI/HF/H ₃ BO ₃) For k ₀ -INAA: Weighing into polyethylene capsules only	As, Cd, Fe, Pb, Mn: External Calibration As, Fe, Mn: k ₀ - standardization method of INAA. As, Cd, Pb: External Calibration As, Cd, Fe: k ₀ - standardization	As, Fe, Pb, Mn: ICP-MS Cd: ET-AAS As*, Fe*, Mn*: k ₀ -INAA As, Cd, Pb: ICP-MS As*, Cd*, Fe:	As, Fe, Mn: ERM-CC141 Loam soil BCR-320R Channel sediment IRMM-530R (Al-0.1%Au alloy)
LNE	Non- contaminated soil	As, Cd, Fe, Pb, Mn As, Cd, Pb	Digestion in a closed micro wave oven with HNO ₃ /HF/H ₂ O ₂	method of INAA. As, Mn: Standard addition method with internal standard (⁷⁵ As/ ⁸⁹ Y) and (⁵⁵ Mn/ ⁵⁴ Fe). Cd, Pb: Double isotope dilution (¹¹³ Cd/ ¹¹¹ Cd), (¹¹² Cd/ ¹¹¹ Cd), (²⁰⁸ Pb/ ²⁰⁶ Pb) Fe: external calibration monitoring ⁵⁴ Fe, ⁵⁶ Fe, ⁵⁷ Fe	k ₀ -INAA As, Fe, Mn: ICP-QMS with collision cell Cd, Pb: ID-ICP-QMS	As: calibrant solution for standard addition is in house prepared based on high-purity As, 99.9 %, previously checked for impurities Cd: calibrant (reverse ID) is in house prepared primary calibration solution based on high-purity Cadmium 99.999 %, previously checked for impurities; Spike ¹¹¹ Cd (97.23 %) Fe: calibrant solution for external calibration is in house prepared based on high-purity Fe, 99.995 %, previously checked for impurities Pb: calibrant (reverse ID) is in house prepared primary calibration solution based on high-purity Lead 99.9999 %, previously checked for impurities; Spike ²⁰⁶ Pb (99.302%) Mn: calibrant solution for standard addition is in house prepared based on high-purity

Institute	Sample	Analyte	Sample preparation/Dig estion procedure	Calibration method	Analytical instrument	Reference material used for calibration (Traceability)
						Mn, 99.995 %, previously checked for impurities
NIM	Non- contaminated soil	As, Cd, Mn	Thermal digestion of 150 ℃-170 ℃ (HNO ₃ / HF/HCIO ₄)	As, Fe, Mn: External calibration method Cd: ¹¹¹ Cd spike (GBW 04441) CRM used as calibrant.	As: ICP-MS Cd: ID-ICP-MS Mn: ICP-OES	As: GBW 08611 As standard solution Cd: GBW 04441 ¹¹¹ Cd spike CRM; GBW 08612 Cd standard solution Mn: GBW(E) 080157 Mn standard solution
	Contaminated soil	As, Cd, Fe, Pb		As, Cd, Fe: External calibration method Cd: GBW 08612 Cd standard as calibrant Pb: NIST 981 CRM used as calibrant.	As: ICP-MS/ICP- OES* Cd: ID-ICP-MS/ ICP- OES* Fe: ICP-OES Pb: ID-ICP-MS	Fe: GBW 08616 Fe standard solution Pb: GBW 08619 Pb standard solution as primary standard
NIST	Non- contaminated soil	Cd, Fe, Pb, Mn	Microwave- assisted digestion: Cd, Pb: HNO ₃ /HCIO ₄ /HF Fe, Mn: HNO ₃ /HCI/HF	Cd, Pb: reverse isotope dilution mass spectrometry Fe, Mn: Single point standard addition	Cd, Pb: ID-ICP-QMS Fe, Mn: ICP-OES	Cd: SRM 3108 Cadmium Standard Solution (lot # 130116) and SRM 746 Cadmium-Vapor Pressure Fe, Mn: SRMs 2709a San Joaquin Soil and 2711a Montana II Soil
	Contaminated soil	Cd, Fe, Pb	Microwave- assisted digestion: Cd, Pb: HNO ₃ /HF Fe: HNO ₃ /HCI/HF			Pb: SRM 3128 Lead Standard Solution (lot # 101026)
NMIJ	Non- contaminated soil Contaminated soil	As, Cd, Fe, Pb, Mn As, Cd, Fe, Pb	Microwave- assisted digestion (HNO ₃ /HCIO ₄ / HF)	As, Mn: External calibration Cd, Fe, Pb: Double IDMS	As: High resolution ICP-MS As, Cd, Fe, Pb, Mn:	As, Cd, Fe, Mn: JCSS standard solution Pb: JCSS standard solution; NIST SRM 981 and 982 (used for mass bias correction)
			contaminated soil: chemical coprecipitation as Cd separation method		107-103	
NMISA	Non- contaminated soil	As, Cd, Fe, Pb, Mn	Microwave digestion (HNO ₃ /HCI/HF/ H ₃ BO ₃)	As, Mn: External calibration, 6 calibration points Cd, Fe, Pb: Double Isotope Dilution- ICPMS	As, Mn: ICP-SFMS Cd, Fe, Pb: ID-ICP-SFMS	NCS DC 73319 (GBW 07401) NCS DC 73323 (GBW 07405)
	Contaminated soil	As, Cd, Fe, Pb				
NRC	Non- contaminated soil Contaminated	As, Cd, Fe, Pb, Mn As, Cd.	Microwave digestion (HNO ₃ /HF/ HClO ₄)	Fe, As, Pb, Mn: Standard additions Cd: Isotope dilution As, Cd, Fe, Pb:	Fe, As, Pb, Mn ICP-OES Cd : ICP-MS Fe, As, Pb: ICP-	Fe-28966 Mn-32456a Pb-27668 As-28858
	soil	Fe, Pb		Standard additions	OES Cd : ICP-MS	Cd-32862

Institute	Sample	Analyte	Sample preparation/Dig estion procedure	Calibration method	Analytical instrument	Reference material used for calibration (Traceability)
TUBITAK UME	Non- contaminated soil	As, Cd, Fe, Pb, Mn	Microwave digestion (HNO ₃ /HCI/HF)	As, Mn: Matrix matched standard additions method Cd, Fe: Isotope	As, Mn: High resolution ICP-MS Cd, Fe, Pb:	As: NIST SRM 3103a Cd: IRMM 621 Fe: IRMM 640 Pb: NIST SRM 991; NIST SRM
	Contaminated soil	As, Cd, Fe, Pb		dilution mass spectrometry Pb: Isotope dilution mass spectrometry (Reverse IDMS)	ID-ICP-MS	981; NIST SRM 982 Mn: NIST SRM 3132
VNIIM	Non- contaminated soil	As, Cd, Fe, Pb, Mn	Microwave digestion (HNO ₃ /HCI)	External calibration, linear 5 points	ICP-MS	ICP multi-element standard solution IV (Merck) Environmental calibration standard (Agilant Technologies)
	Contaminated soil	As, Cd, Fe, Pb				Standard (Agrient Technologies)

* Methods of measurement that provide information values from JSI and NIM.

5. Results and Discussion

5.1 General

The total registered institutes were 19 for CCQM-K127 and only 18 institutes sent report results. In Table 9 is shown the reported analytes by each institute and by sample.

NMI		Non-C	ontaminat	ed Soil		Contaminated Soil			
	As	Cd	Fe	Pb	Mn	As	Cd	Fe	Pb
1 ANSTO	Х		X		Х	Х	Х	Х	
2 CENAM	Х	Х	Х	Х	Х	Х	Х	Х	Х
3 CSIR-NPLI						Х	Х	Х	Х
4 GLHK	Х	Х	Х	Х	Х	Х	Х	Х	Х
5 INACAL	Х	Х	Х	Х	Х	Х	Х	Х	Х
6 INM	Х	Х	Х	Х	Х	Х	Х	Х	Х
7 INMETRO	Х		X	Х	Х	Х	Х	Х	Х
8 INTI	Х	Х	Х	Х	Х	Х	Х	Х	Х
9 IRMM	Х	Х	Х	Х	Х	Х	Х	Х	Х
10 JSI	XX	Х	XX	Х	XX	XX	XX	Х	Х
11 KEBS									
12 LNE	Х	Х	Х	Х	Х	Х	Х	Х	Х
13 NIM	Х	Х			Х	XX	XX	Х	Х
14 NIST		X	Х	Х	Х		Х	Х	Х
15 NMIJ	Х	Х	Х	Х	Х	Х	Х	Х	Х
16 NMISA	Х	Х	Х	Х	Х	Х	Х	Х	Х
17 NRC	Х	Х	Х	Х	Х	Х	Х	Х	X
18 TUBITAK	X	Х	Х	Х	Х	X	X	Х	X
19 VNIIM	Х	Х	Х	Х	Х	Х	Х	Х	Х

Table 9. List of reported results for each analyte in both soils by each institute.

It is important to mention, that the original programmed schedule suffer some changes in the deadline for delivery results. It happens due the requested participation of 4 new institutes (IRMM, ANSTO, CSIR-NPLI and KEBS) which was approved during the IAWG meeting in April 2015, then the deadline was change from August 31st to October 15th. Later on, due some institutes had some problems with the process of customs, in order to obtain the soils samples, it was required a new dead line for delivery results, which finally was set on November 1st 2015.

5.2 Reported results

The reported results of the key comparison were from 18 institutes (NMIs/DIs), 151 measurements were reported for CCQM-K127. KEBS does not report results due to some problems in their institute. As specified in the protocol, participants were required to report their results on dry mass basis for comparability purposes. The Tables 10 to 18 shown the reported results, which identify the results with the names of the participating institutes and it is sorted in ascending order.

Institute	Reported value (µg/g)	Standard uncertainty (µg/g)	Coverage factor k (95% level of confidence)	Expanded uncertainty (µg/g)	Analytical instrument / Method	Dry mass correction factor (g/g)
VNIIM	9.41	0.39	2	0.77	EC-ICP-MS	0.9712
IRMM*	10.4	2.4	2	4.8	ECB-ICP-OES	0.9730
LNE	12.25	0.28	2	0.56	IE+SA-ICP- QMS-CC	0.9910
NIM	12.7	0.3	2	0.6	EC-ICP-MS	0.978
INM	12.8	0.9	2	1.8	B-ICP-MS	0.9774
GLHK	12.9	0.6	2	1.2	SA-ICP-MS	0.9866
ANSTO	13.1	0.5	2	1	INAA	0.9690
INMETRO	13.35	0.22	2	0.44	EC-ICP-MS	0.9696
NMIJ	13.48	0.09	2	0.18	EC-ICP-SFMS	0.9698
CENAM	13.53	0.46	2	0.93	IE+SA-ICP- SFMS	0.9775
NMISA	13.78	0.55	2	1.1	EC-ICP-SFMS	0.971938
INTI	13.79	0.26	2	0.52	SA-ICP-MS	0.9807
NRC	14.2	0.57	2	1.1	SA-ICP-OES	0.9698
JSI	14.2	0.4	2	0.8	EC-ICP-MS	0.9654
TUBITAK	14.4	0.44	2	0.88	SA-HR-ICP-MS	0.9737
INACAL	19.88	0.80	2	1.6	EC-HG-AAS	0.9709
JSI**	14.18	0.43	2	0.86	INAA	0.9654

Table 10. Reported results of mass fraction of As in non-contaminated soil.

* The IRMM suggested their result of As in non-contaminated soil should not be included in the KCRV as they knew it to be erroneous. Also, the IRMM advised that the standard uncertainty for calculation was in error because they reported the expanded uncertainty, the IRMM result will be evaluated with the original reported standard uncertainty.

** Information value.

Institute	Reported value (µg/g)	Standard uncertainty (µg/g)	Coverage factor k (95% level of confidence)	Expanded uncertainty (µg/g)	Analytical instrument / Method	Dry mass correction factor (g/g)
VNIIM	60.56	2.79	2	5.6	EC-ICP-MS	0.9782
LNE	68	3	2	6	IE+SA-ICP- QMS-CC	0.9800
NMISA	71.2	3.2	2	6.4	EC-ICP-SFMS	0.97892
IRMM*	72	17	2	34	ECB-ICP-OES	0.9762
INTI	74.46	0.75	2	1.5	SA-ICP-MS	0.9852
NRC	75.0	2.9	2	5.8	SA-ICP-OES	0.9751
ANSTO	75.7	3.0	2	6	INAA	0.9756
GLHK	76.2	3.2	2	6.4	SA-ICP-MS	0.9908
NMIJ	76.24	0.58	2	1.2	EC-ICP-MS	0.9762
INM	76.6	5.15	2	10	B-FAAS	0.9954
CENAM	77.7	1.4	2	2.8	IE+SA-ICP- SFMS	0.97753
JSI	78.5	1.9	2	3.8	EC-ICP-MS	0.9714
INMETRO	78.6	1.2	2	2.4	EC-ICP-OES	0.9732
INACAL	79.66	3.21	2	6.4	SA-ETAAS	0.9804
TUBITAK	79.7	2.7	2	5.4	SA-HR-ICP- MS	0.9799
NIM	80.2	1.3	2	2.6	EC-ICP-MS	0.972
CSIR-NPLI	92.18	4.22	2	8.4	EC-ICP-OES	0.9903
NIM**	78.0	1.4	2	2.8	EC-ICP-OES	0.972
JSI**	79.5	2.4	2	4.8	INAA	0.9714

Table 11. Reported results of mass fraction of As in contaminated soil.

* The IRMM advised that their standard uncertainty was in error because they had reported the expanded uncertainty. It was approved to use the corrected standard uncertainty for the calculation of KCRV, but the IRMM result will be evaluated with the original reported standard uncertainty.

** Information values.

Institute	Reported value (µg/g)	Standard uncertainty (µg/g)	Coverage factor k (95% level of confidence)	Expanded uncertainty (µg/g)	Analytical instrument / Method	Dry mass correction factor (g/g)
INM	0.37	0.03	2	0.06	B-ICP-MS	0.9774
VNIIM	0.385	0.026	2	0.052	EC-ICP-MS	0.9712
LNE	0.481	0.005	2	0.01	ID-ICP-QMS	0.9820
CENAM	0.5121	0.0042	2	0.0084	ID-ICP-SFMS	0.9707
GLHK	0.513	0.024	2	0.048	SA-ICP-MS	0.9866
NIST	0.5146	0.0044	2.18	0.0096	ID-ICP-QMS	0.9713
NMIJ	0.518	0.011	2	0.022	ID-ICP-MS	0.9692
INACAL	0.52	0.02	2	0.04	SA-ETAAS	0.9709
NIM	0.531	0.008	2	0.016	ID-ICP-MS	0.978
NMISA	0.534	0.011	2	0.022	ID-ICP-SFMS	0.971938
TUBITAK	0.550	0.008	2	0.016	ID-ICP-MS	0.9737
NRC	0.551	0.022	2	0.044	ID-ICP-QMS	0.9698
JSI	0.557	0.012	2	0.024	EC-ETAAS	0.9654
IRMM*	0.571	0.012	2	0.024	ID-ICP-MS	0.9730
INTI	0.619	0.015	2	0.03	SA-ICP-MS	0.9807

Table 12. Reported results of mass fraction of Cd in non-contaminated soil.

Institute	Reported value (µg/g)	Standard uncertainty (µg/g)	Coverage factor k (95% level of confidence)	Expanded uncertainty (µg/g)	Analytical instrument / Method	Dry mass correction factor (g/g)
VNIIM	395.3	11.6	2	23	EC-ICP-MS	0.9782
ANSTO	416	15	2	30	INAA	0.9756
NMISA	422.7	7.8	2	16	ID-ICP-SFMS	0.97892
CSIR-NPLI	424.12	18.29	2	37	EC-ICP-OES	0.9903
INTI	426.8	3.1	2	6.2	SA-ICP-MS	0.9852
NRC	427	14.4	2	29	SA-ICP-OES	0.9751
INMETRO	432.0	4.7	2	9.4	EC-ICP-OES	0.9732
NMIJ	436.2	5.1	2	10	ID-ICP-MS	0.976
LNE	438	3	2	6	ID-ICP-QMS	0.9860
IRMM*	438.1	8.2	2	16	ID-ICP-MS	0.9762
NIST	440.7	3.4	2.13	7.2	ID-ICP-QMS	0.9769
TUBITAK	442	6	2	12	ID-ICP-MS	0.9799
NIM	443.0	3.7	2	7.4	ID-ICP-MS	0.972
CENAM	443.3	2.8	2	5.6	ID-ICP-SFMS	0.9765
INACAL	452.47	11.32	2	23	SA-FAAS	0.9804
GLHK	455	16	2	32	SA-ICP-MS	0.9908
JSI	458	9	2	18	EC-ICP-MS	0.9714
INM	461	12	2	24	B-FAAS	0.9954
NIM**	445.2	7.2	2	14	EC-ICP-OES	0.972
JSI**	446	16	2	32	INAA	0.9714

Table 13. Reported results of mass fraction of Cd in contaminated soil.

* The IRMM advised that their standard uncertainty was in error because they had reported the expanded uncertainty. It was approved to use the corrected standard uncertainty for the calculation of KCRV, but the IRMM result will be evaluated with the original reported standard uncertainty.

** Information values.

Institute	Reported value (mg/g)	Standard uncertainty (mg/g)	Coverage factor k (95% level of confidence)	Expanded uncertainty (mg/g)	Analytical instrument / Method	Dry mass correction factor (g/g)
VNIIM	24.27	0.52	2	1	EC-ICP-MS	0.9712
INTI	28.27	0.40	2	0.8	SA-ICP-OES	0.9807
INM	31.4	0.3	2	0.6	B-FAAS	0.9774
LNE	31.59	0.68	2	1.4	EC-ICP-QMS- CC	0.991
IRMM*	31.9	4.3	2	8.6	EC-ICP-OES	0.9730
NRC	31.9	0.77	2	1.5	SA-ICP-OES	0.9698
GLHK	32.1	0.8	2	1.6	SA-ICP-OES	0.9866
ANSTO	32.3	1.2	2	2.4	INAA	0.9690
INMETRO	32.36	0.30	2	0.6	EC-ICP-OES	0.9696
NMISA	32.5	0.45	2	0.9	ID-ICP-SFMS	0.971938
NIST	32.654	0.087	2.2	0.19	SA-ICP-OES	0.9713
CENAM	32.66	0.28	2	0.56	ID-ICP-SFMS	0.9707
NMIJ	32.85	0.64	2	1.3	ID-ICP-MS	0.9692
TUBITAK	33.2	0.3	2	0.6	ID-ICP-MS	0.9737
INACAL	34.20	0.84	2	1.7	SA-FAAS	0.9709
JSI	34.3	0.7	2	1.4	EC-ICP-MS	0.9654
JSI**	34.25	0.86	2	1.7	INAA	0.9654

Table 14. Reported results of mass fraction of Fe in non-contaminated soil.

* The IRMM advised that their standard uncertainty was in error because they had reported the expanded uncertainty. It was approved to use the corrected standard uncertainty for the calculation of KCRV, but the IRMM result will be evaluated with the original reported standard uncertainty.

** Information value.

Institute	Reported value (mg/g)	Standard uncertainty (mg/g)	Coverage factor k (95% level of confidence)	Expanded uncertainty (mg/g)	Analytical instrument / Method	Dry mass correction factor (g/g)
VNIIM	17.55	0.39	2	0.78	EC-ICP-MS	0.9782
INTI	18.02	0.50	2	1	SA-ICP-OES	0.9852
LNE	19.1	0.3	2	0.6	EC-ICP-QMS- CC	0.9800
NRC	19.4	0.77	2	1.5	SA-ICP-OES	0.9751
NIM	19.5	0.4	2	0.8	EC-ICP-OES	0.972
INMETRO	19.5	0.19	2	0.38	EC-ICP-OES	0.9732
NMISA	19.72	0.33	2	0.66	ID-ICP-SFMS	0.97892
GLHK	20.1	0.5	2	1	SA-ICP-OES	0.9908
INM	20.2	0.3	2	0.6	B-FAAS	0.9954
NIST	20.42	0.34	2.8	0.95	SA-ICP-OES	0.9769
TUBITAK	20.6	0.2	2	0.4	ID-ICP-MS	0.9799
NMIJ	20.65	0.58	2	1.2	ID-ICP-MS	0.976
CENAM	20.66	0.28	2	0.56	ID-ICP-SFMS	0.9765
ANSTO	20.7	0.8	2	1.6	INAA	0.9756
IRMM*	21.1	2.9	2	5.8	EC-ICP-OES	0.9762
JSI	21.14	0.53	2	1.1	INAA	0.9714
INACAL	21.30	0.52	2	1	SA-FAAS	0.9804
CSIR-NPLI	22.64	0.21	2	0.42	ECB-ICP-OES	0.9903

Table 15. Reported results of mass fraction of Fe in contaminated soil.

Institute	Reported value (µg/g)	Standard uncertainty (µg/g)	Coverage factor k (95% level of confidence)	Expanded uncertainty (µg/g)	Analytical instrument / Method	Dry mass correction factor (g/g)
VNIIM	35.34	1.05	2	2.1	EC-ICP-MS	0.9712
JSI	36.9	0.7	2	1.4	EC-ICP-MS	0.9654
NRC	37.22	1.2	2	2.4	SA-ICP-OES	0.9698
NMIJ	38.56	1.01	2	2	ID-ICP-MS	0.9692
INACAL	38.9	1.6	2	3.2	SA-ETAAS	0.9709
GLHK	39.2	1.0	2	2	SA-ICP-MS	0.9866
INTI	39.29	0.91	2	1.8	SA-ICP-MS	0.9807
INM	39.4	2.3	2	4.6	B-ICP-MS	0.9774
CENAM	39.48	0.18	2	0.36	ID-ICP-SFMS	0.9775
NMISA	39.65	0.41	2	0.82	ID-ICP-SFMS	0.971938
IRMM*	39.72	0.85	2	1.7	ID-ICP-MS	0.9730
LNE	40.0	0.75	2	1.5	ID-ICP-QMS	0.9710
NIST	40.34	0.50	2.03	1	ID-ICP-QMS	0.9713
TUBITAK	41.3	1.4	2	2.8	ID-ICP-MS	0.9737
INMETRO	54.74	0.94	2	1.9	EC-ICP-OES	0.9696

Table 16. Reported results of mass fraction of Pb in non-contaminated soil.

Institute	Reported value (µg/g)	Standard uncertainty (µg/g)	Coverage factor k (95% level of confidence)	Expanded uncertainty (µg/g)	Analytical instrument / Method	Dry mass correction factor (g/g)
INTI	214.4	4.6	2	9.2	SA-ICP-MS	0.9852
JSI	215	4	2	8	EC-ICP-MS	0.9714
VNIIM	219.6	10.6	2	21	EC-ICP-MS	0.9782
INM	225	5	2	10	B-FAAS	0.9954
NMISA	225.1	3.3	2	6.6	ID-ICP-SFMS	0.97892
INACAL	227.62	9.56	2	19	SA-ETAAS	0.9804
LNE	229	2.5	2	5	ID-ICP-QMS	0.98
IRMM*	229.9	4.2	2	8.4	ID-ICP-MS	0.9762
INMETRO	230.4	2.2	2	4.4	EC-ICP-OES	0.9732
NIST	230.6	2.1	1.97	4.1	ID-ICP-QMS	0.9769
CENAM	231.0	1.4	2	2.8	ID-ICP-SFMS	0.9775
NRC	232	8.7	2	17	SA-ICP-OES	0.9751
NMIJ	232.3	1.9	2	3.8	ID-ICP-MS	0.976
GLHK	234	5.5	2	11	SA-ICP-MS	0.9908
NIM	234.0	1.9	2	3.8	ID-ICP-MS	0.972
TUBITAK	235	8	2	16	ID-ICP-MS	0.9799
CSIR-NPLI	237.9	10.42	2	21	EC-ICP-OES	0.9903

Table 17. Reported results of mass fraction of Pb in contaminated soil.

Institute	Reported value (µg/g)	Standard uncertainty (µg/g)	Coverage factor k (95% level of confidence)	Expanded uncertainty (µg/g)	Analytical instrument / Method	Dry mass correction factor (g/g)
VNIIM	830.2	29.9	2	60	EC-ICP-MS	0.9712
INTI	848.7	17.4	2	35	SA-ICP-OES	0.9807
NIM	1033	23	2	46	EC-ICP-OES	0.978
INM	1052	21	2	42	B-FAAS	0.9774
LNE	1071	32	2	64	IE+SA-ICP- QMS-CC	0.991
NMISA	1122	12	2	24	EC-ICP-SFMS	0.971938
INMETRO	1131.14	8.65	2	17	EC-ICP-OES	0.9696
GLHK	1150	48	2	96	SA-ICP-OES	0.9866
NRC	1150	18	2	36	SA-ICP-OES	0.9698
CENAM	1150	49	2	98	IE+SA-ICP- SFMS	0.9775
NMIJ	1156.5	5.5	2	11	EC-ICP-MS	0.9698
ANSTO	1157	45	2	90	INAA	0.9690
JSI	1167	32	2	64	EC-ICP-MS	0.9654
TUBITAK	1172	38	2	76	SA-HR-ICP- MS	0.9737
NIST	1175.4	6.2	2.3	14	SA-ICP-OES	0.9713
IRMM*	1180	170	2	340	EC-ICP-OES	0.9730
INACAL	1214.26	25.50	2	51	SA-FAAS	0.9709
JSI**	1194	36	2	72	INAA	0.9654

Table 18. Reported results of mass fraction of Mn in non-contaminated soil.

* The IRMM advised that their standard uncertainty was in error because they had reported the expanded uncertainty. It was approved to use the corrected standard uncertainty for the calculation of KCRV, but the IRMM result will be evaluated with the original reported standard uncertainty.

** Information value.

5.3 Estimation of the key comparison mass fraction reference values and associated uncertainties

During the IAWG meeting on 17 to 19 November of 2015 in Teddington, the preliminary results of the comparison using all reported data were presented. The presentation summarized the calculated consensus values and their respective standard uncertainties using different location estimators including arithmetic mean, median, robust mean and mixture-model median (MM-median); all data were included in the calculation. The proposed statistics used for analyse the evaluation [2] using all data were:

• Simple arithmetic mean (Eq. 3), and the standard deviation of the mean augmented with the mean of the reported within variance of the participants $u^2(x_i)$ (Eq. 4). This is named S+ in the CCQM-04-15 [3].

$$x_{\text{KCRV}} = \frac{1}{n} \sum_{i=1}^{n} x_i, \tag{3}$$

$$u[x_{\text{KCRV}}] = \sqrt{\frac{1}{n} \left(\frac{1}{n-1} \sum_{i=1}^{n} (x_i - x_{\text{KCRV}})^2 + \frac{1}{n} \sum_{i=1}^{n} u^2(x_i) \right)}$$
(4)

• Median for location (Eq. 5) and the Modified Median Absolute Deviation About the Median (MMADe) uncertainty estimation (Eq. 6), which appears as MADe in the pdf-Maker software [median absolute deviation (MAD) multiplied by 1.483] augmented with the median of the reported within variance of the participants $u^2(x_i)$. This is named MADe+ in the CCQM-04-15 [3].

$$x_{\text{KCRV}} = median(x_i) \tag{5}$$

$$MMADe(x_1, \dots, x_n) = \sqrt{\frac{\pi}{2n} \left(\left(MADe(x_i) \right)^2 + median(u^2(x_i)) \right)}$$
(6)

Where,

$$MADe(x_1, \dots, x_n) = 1.483 \cdot median(|x_i - x_{\text{KCRV}}|) \tag{7}$$

• MMmedian statistics for location and the Modified MADe (MMADe) uncertainty estimation. MMmedian statistics is based on the mixture of the probability density functions (pdf) of the participants. The mixture pdf is called MM-PDF in the CCQM-04-15 [3]. The analytic solution to this mixture of pdf becomes increasingly complex with the number of participants, so the way to proceed is by computing a numerical solution, often an iteratively method is applied. In this sense an estimate using Monte Carlo Simulation converges to the same numerical solution. As a double check, it was conducted an independent estimation validation process, which uses Monte Carlo simulation, for the MMmedian-MMADe estimates. Once the pdf-Maker estimations were validated, the estimates were produced thereafter by using the Monte Carlo method.

5.3.1 During the IAWG meeting in Teddington, it was presented the preliminary results, and during the IAWG meeting carried out in April 2016, it was agreed after discussion to use the Median as KCRV and the MMADe as $u(x_{KCRV})$. The tables 19 and 20 show the results.

For those institutes, which submitted more than one result for a measurand, the value obtained with their principle method was used for the KCRV as this represents their best measurement capability. IRMM suggested their result of As in non-contaminated soil should not be included in the KCRV as they knew it to be erroneous and it was accepted by the IAWG. Also, IRMM advised that their standard uncertainty was in error because they had reported the expanded uncertainty. It was approved to use the corrected standard uncertainty for the calculation of KCRV, but the IRMM result will be evaluated with the original reported standard uncertainty.

Measurand	Median	MMADe	n	
As (µg/g)	13.48	0.36	15	
Cd (µg/g)	0.520	0.015	15	
Fe (mg/g)	32.33	0.29	16	
Pb (µg/g)	ο (μg/g) 39.40		15	
Mn (µg/g)	1150	14	17	

 Table 19. Values of the KCRV and respective standard uncertainties, with no multiple methods and with all data reported by NMIs/DIs for Non-contaminated soil.

 Table 20. Values of the KCRV and respective standard uncertainties, with no multiple methods and with all data reported by NMIs/DIs for Contaminated soil.

Measurand	Median	MMADe	n	
As (µg/g)	76.2	1.4	17	
Cd (µg/g)	438.1	5.3	18	
Fe (mg/g)	Fe (mg/g) 20.31		18	
Pb (µg/g)	230.4	2.0	17	

The results of the CCQM-K127 are presented in Figures 1 to 9 with the respective Median as KCRV and MMADe as u(KCRV).

Figure 1. Arsenic in non-contaminated soil and standard uncertainties. IRMM suggested their result of As in non-contaminated soil should not be included in the KCRV as they knew it to be erroneous.

Figure 2. Arsenic in contaminated soil and standard uncertainties.

Figure 3. Cadmium in non-contaminated soil and standard uncertainties.

Figure 4. Cadmium in contaminated soil and standard uncertainties.

Figure 5. Iron in non-contaminated soil and standard uncertainties.

Figure 6. Iron in contaminated soil and standard uncertainties.

Figure 7. Lead in non-contaminated soil and standard uncertainties.

Figure 8. Lead in contaminated soil and standard uncertainties.

Figure 9. Manganese in non-contaminated soil and standard uncertainties.

5.4 The equivalence statements

The degree of equivalence (DoE), d_i , between an individual NMI/DI result, x_i , and the KCRV, x_{KCRV} , and its standard uncertainty $u(d_i)$ was calculated using equations 8, 9, and 10, in accordance with the CCQM guidance note 2013 in Appendix 2, Section 2.3, where the uncertainty of the degrees of equivalence include covariance terms [2]. The calculations used the KCRV and associated standard uncertainty for each measurand presented in section 5.3 (Tables 19 and 20). The DoE was not calculated for information values reported by NMIs/DIs which used multiple methods for the same measurand.

$$d_i = x_i - x_{\rm KCRV} \tag{8}$$

$$u(d_i) = \sqrt{u^2(x_i) + u^2(x_{\text{KCRV}}) - 2 \cdot \text{cov}(x_i, x_{\text{KCRV}})}$$
(9)

where the covariance $cov(x_i, x_{KCRV})$ and the expanded uncertainty $U(d_i)$ are calculated as follows:

$$cov(x_i, x_{\text{KCRV}}) = \begin{cases} 0, \text{ if } x_i \text{ is not used to estimate } x_{\text{KCRV}} \\ u^2(x_i)/n, \text{ if } x_i \text{ is used to estimate } x_{\text{KCRV}} \end{cases}$$
(10)

Where values for n are shown in tables 19 and 20.

Explanation of the evaluation of IRMM:

From section 2.3 in CCQM13-22 (special cases, page 26) and the fact that we are using corrected uncertainty $u(x_i)$ for the KCRV, but the uncorrected uncertainty $k_i u(x_i)$ for DOE evaluation, where k_i is the expansion factor used by the participating laboratory, we have,

$$u^{2}(d_{i}) = u^{2}[x_{i,\text{uncorrected}} - X_{\text{KCRV}}] = u^{2}[x_{i,\text{uncorrected}}] + u^{2}[X_{\text{KCRV}}] - 2Cov[x_{i,\text{uncorrected}}, X_{\text{KCRV}}] = (k_{i}u(x_{i}))^{2} + u^{2}(X_{\text{KCRV}}) - 2k_{i}Cov[x_{i,\text{corrected}}, X_{\text{KCRV}}] = (k_{i}^{2} - \frac{2k_{i}}{m})u^{2}(x_{i}) + u^{2}(X_{\text{KCRV}})$$

$$(11)$$

And $u^2(X_{\text{KCRV}}) = MMADe(x_1, ..., x_n)$ as stated in equation (6). This new solution approaches to the known result as k_i converges to 1.

The $U(d_i)$ is calculated as follows:

$$U(d_i) = k \cdot u(d_i) \tag{12}$$

The result DoEs are listed together with their associated uncertainties for each measurand in Table 21 through 29 and graphically displayed in Figures 10 to 18. The normalized error E_n (equation 13) is also added to these tables.

CCQM-K127 Final Report

$$E_n = \frac{|d_i|}{U(d_i)} \tag{13}$$

The u(di) for each reported measurand of IRMM (Belgium) is calculated using the original reported standard uncertainty.

NMI/DI	Reported value <i>xi</i> , (µg/g)	<i>u(xi)</i> (μg/g)	<i>di</i> μg/g	U(di) μg/g	di/U(di)	<i>di/x</i> kcrv %	<i>U(di)/x</i> kcrv %
VNIIM	9.41	0.39	-4.1	1	-4.0	-30%	7.6%
IRMM	10.4	2.4	-3.1	4.9	-0.63	-23%	36%
LNE	12.25	0.28	-1.2	0.89	-1.4	-9.1%	6.6%
NIM	12.7	0.3	-0.78	0.91	-0.86	-5.8%	6.8%
INM	12.8	0.9	-0.68	1.8	-0.37	-5.0%	13.5%
GLHK	12.9	0.6	-0.58	1.3	-0.44	-4.3%	9.9%
ANSTO	13.1	0.5	-0.38	1.2	-0.32	-2.8%	8.7%
INMETRO	13.35	0.22	-0.13	0.83	-0.16	-1.0%	6.1%
NMIJ	13.48	0.09	0.0	0.74	0.0	0.0%	5.5%
CENAM	13.53	0.46	0.050	1.1	0.045	0.37%	8.3%
NMISA	13.78	0.55	0.30	1.3	0.24	2.2%	9.3%
INTI	13.79	0.26	0.31	0.87	0.36	2.3%	6.4%
JSI	14.2	0.4	0.72	1	0.70	5.3%	7.7%
NRC	14.2	0.57	0.72	1.3	0.56	5.3%	9.5%
TUBITAK	14.4	0.44	0.92	1.1	0.84	6.8%	8.1%
INACAL	19.88	0.80	6.4	1.7	3.9	47%	12%

Table 21. Equivalence statement of Arsenic in non-contaminated soil for CCQM-K127.

NMI/DI	Reported value <i>xi</i> , (µg/g)	<i>u(xi)</i> (μg/g)	<i>di</i> μg/g	U(di) μg/g	di/U(di)	<i>di/x</i> kcrv %	<i>U(di)/x</i> kcrv %
VNIIM	60.56	2.79	-16	5.9	-2.6	-21%	7.8%
LNE	68	3	-8.2	6.3	-1.3	-11%	8.3%
NMISA	71.2	3.2	-5.0	6.6	-0.75	-6.6%	8.7%
IRMM	72	17	-4.2	32	-0.13	-5.5%	42%
INTI	74.46	0.75	-1.7	3.1	-0.56	-2.3%	4.1%
NRC	75.0	2.9	-1.2	6.1	-0.20	-1.6%	8.0%
ANSTO	75.7	3.0	-0.50	6.3	-0.079	-0.66%	8.3%
GLHK	76.2	3.2	0.0	6.6	0.0	0.0%	8.7%
NMIJ	76.24	0.58	0.04	3	0.0	0.1%	3.9%
INM	76.6	5.15	0.4	10	0.04	0.52%	13%
CENAM	77.7	1.4	1.5	3.8	0.39	2.0%	5.0%
JSI	78.5	1.9	2.3	4.5	0.51	3.0%	6.0%
INMETRO	78.6	1.2	2.4	3.6	0.67	3.1%	4.7%
INACAL	79.66	3.21	3.5	6.6	0.52	4.5%	8.7%
TUBITAK	79.7	2.7	3.5	5.8	0.60	4.6%	7.6%
NIM	80.2	1.3	4.0	3.7	1.1	5.2%	4.9%
CSIR-NPLI	92.18	4.22	16	8.4	1.9	21%	11%

Table 22. Equivalence statement of Arsenic in contaminated soil for CCQM-K127.

Figure 11. Graph of equivalence statements for CCQM-K127 As in contaminated soil. Error bars represent the interval calculated by the expanded uncertainties with the corresponding coverage factor reported by each NMI/DI.

NMI/DI	Reported value x _i , (µg/g)	<i>u(xi)</i> (µg/g)	<i>di</i> μg/g	U(di) μg/g	di/U(di)	<i>di/x</i> kcrv %	<i>U(di)/x</i> kcrv %
INM	0.37	0.03	-0.15	0.063	-2.4	-29%	12%
VNIIM	0.385	0.026	-0.14	0.057	-2.4	-26%	11%
LNE	0.481	0.005	-0.039	0.031	-1.2	-7.5%	6.0%
CENAM	0.5121	0.0042	-0.0079	0.031	-0.25	-1.5%	6.0%
GLHK	0.513	0.024	-0.0070	0.054	-0.13	-1.3%	10%
NIST	0.5146	0.0044	-0.0054	0.031	-0.17	-1.0%	6.0%
NMIJ	0.518	0.011	-0.0020	0.036	-0.055	-0.38%	7.0%
INACAL	0.52	0.02	0.0	0.048	0.0	0.0%	9.2%
NIM	0.531	0.008	0.011	0.033	0.33	2.1%	6.4%
NMISA	0.534	0.011	0.014	0.036	0.39	2.7%	7.0%
TUBITAK	0.55	0.008	0.030	0.033	0.90	5.8%	6.4%
NRC	0.551	0.022	0.031	0.051	0.61	6.0%	9.8%
JSI	0.557	0.012	0.0370	0.037	0.99	7.1%	7.2%
IRMM	0.571	0.012	0.051	0.037	1.4	9.8%	7.2%
INTI	0.619	0.015	0.099	0.041	2.4	19%	7.9%

Table 23. Equivalence statement of Cadmium in non-contaminated soil for CCQM-K127.

NMI/DI	Reported value <i>xi</i> , (µg/g)	<i>u</i> (<i>x_i</i>) (μg/g)	di μg/g	U(di) μg/g	di/U(di)	<i>di/x</i> kcrv %	<i>U(di)/x</i> kcrv %
VNIIM	395.3	11.6	-43	24	-1.8	-9.8%	5.5%
ANSTO	416	15	-22	30	-0.73	-5.0%	6.9%
NMISA	422.7	7.8	-15	18	-0.85	-3.5%	4.1%
CSIR- NPLI	424.12	18.29	-14	36	-0.39	-3.2%	8.2%
INTI	426.8	3.1	-11	12	-0.93	-2.6%	2.8%
NRC	427	14.4	-11	29	-0.38	-2.5%	6.7%
INMETRO	432	4.7	-6.1	14	-0.44	-1.4%	3.2%
NMIJ	436.2	5.1	-1.9	14	-0.13	-0.43%	3.3%
LNE	438	3	-0.10	12	-0.0083	-0.023%	2.7%
IRMM	438.1	8.2	0.0	19	0.0	0.0%	4.3%
NIST	440.7	3.4	2.6	13	0.21	0.59%	2.9%
TUBITAK	442	6	3.9	16	0.25	0.89%	3.5%
NIM	443	3.7	4.9	13	0.39	1.1%	2.9%
CENAM	443.3	2.8	5.2	12	0.44	1.2%	2.7%
INACAL	452.47	11.32	14	24	0.60	3.3%	5.4%
GLHK	455	16	17	32	0.53	3.9%	7.3%
JSI	458	9	19.9	20	0.99	4.5%	4.6%
INM	461	12	23	25	0.92	5.2%	5.7%

Table 24. Equivalence statement of Cadmium in contaminated soil for CCQM-K127.

Figure 13. Graph of equivalence statements for CCQM-K127 Cd in contaminated soil. Error bars represent the interval calculated by the expanded uncertainties with the corresponding coverage factor reported by each NMI/DI.

NMI/DI	Reported value x _i , (mg/g)	$u(x_i)$ (mg/g)	<i>d_i</i> mg/g	U(d _i) mg/g	di/U(di)	<i>di/x</i> kcrv %	<i>U(di)/x</i> _{KCRV} %
VNIIM	24.27	0.52	-8.1	1.1	-7.1	-25%	3.5%
INTI	28.27	0.40	-4.1	0.95	-4.3	-13%	2.9%
INM	31.4	0.3	-0.93	0.81	-1.2	-2.9%	2.5%
LNE	31.59	0.68	-0.74	1.4	-0.53	-2.3%	4.3%
IRMM	31.9	4.3	-0.43	8.1	-0.053	-1.3%	25%
NRC	31.9	0.77	-0.43	1.6	-0.28	-1.3%	4.8%
GLHK	32.1	0.80	-0.23	1.6	-0.14	-0.71%	5.0%
ANSTO	32.3	1.2	0.0	2.3	-0.013	-0.093%	7.2%
INMETRO	32.36	0.30	0.03	0.81	0.037	0.09%	2.5%
NMISA	32.5	0.45	0.17	1	0.17	0.53%	3.2%
NIST	32.654	0.087	0.32	0.61	0.53	1.0%	1.9%
CENAM	32.66	0.28	0.33	0.78	0.42	1.0%	2.4%
NMIJ	32.85	0.64	0.52	1.3	0.39	1.6%	4.1%
TUBITAK	33.2	0.30	0.87	0.81	1.1	2.7%	2.5%
INACAL	34.20	0.84	1.9	1.7	1.1	5.8%	5.2%
JSI	34.3	0.7	2.0	1.4	1.4	6.1%	4.4%

Table 25. Equivalence statement of Iron in non-contaminated soil for CCQM-K127.

NMI/DI	Reported value <i>xi</i> , (mg/g)	<i>u(xi)</i> (mg/g)	<i>di</i> mg/g	U(di) mg/g	di/U(di)	<i>di/x</i> kCRV %	U(di)/xkcrv %
VNIIM	17.55	0.39	-2.8	1	-2.6	-14%	5.1%
INTI	18.02	0.5	-2.3	1.2	-1.9	-11%	5.9%
LNE	19.1	0.3	-1.2	0.93	-1.3	-6.0%	4.6%
NRC	19.4	0.77	-0.91	1.6	-0.56	-4.5%	8.0%
NIM	19.5	0.4	-0.81	1.1	-0.77	-4.0%	5.2%
INMETRO	19.5	0.19	-0.81	0.82	-0.99	-4.0%	4.0%
NMISA	19.72	0.33	-0.59	0.97	-0.61	-2.9%	4.8%
GLHK	20.1	0.5	-0.21	1.2	-0.18	-1.0%	5.9%
INM	20.2	0.3	-0.11	0.93	-0.12	-0.54%	4.6%
NIST	20.42	0.34	0.11	1.2	0.094	0.54%	5.8%
TUBITAK	20.6	0.2	0.29	0.83	0.35	1.4%	4.1%
NMIJ	20.65	0.58	0.340	1.3	0.26	1.7%	6.5%
CENAM	20.66	0.28	0.35	0.91	0.39	1.7%	4.5%
ANSTO	20.7	0.8	0.39	1.7	0.23	1.9%	8.3%
IRMM	21.1	2.9	0.79	5.5	0.14	3.9%	27%
JSI	21.14	0.53	0.83	1.2	0.67	4.1%	6.1%
INACAL	21.3	0.52	0.99	1.2	0.81	4.9%	6.0%
CSIR-NPLI	22.64	0.21	2.3	0.84	2.8	11%	4.1%

Table 26. Equivalence statement of Iron in contaminated soil for CCQM-K127.

Figure 15. Graph of equivalence statements for CCQM-K127 Fe in contaminated soil. Error bars represent the interval calculated by the expanded uncertainties with the corresponding coverage factor reported by each NMI/DI.

NMI/DI	Reported value <i>xi</i> , (µg/g)	<i>u(xi)</i> (μg/g)	di μg/g	U(di) μg/g	di/U(di)	<i>di/x</i> kcrv %	<i>U(di)/x</i> kcrv %
VNIIM	35.34	1.05	-4.1	2.1	-1.9	-10%	5.4%
JSI	36.9	0.7	-2.5	1.6	-1.6	-6.3%	3.9%
NRC	37.22	1.2	-2.2	2.4	-0.91	-5.5%	6.1%
NMIJ	38.56	1.01	-0.84	2.1	-0.41	-2.1%	5.2%
INACAL	38.9	1.6	-0.50	3.1	-0.16	-1.3%	7.9%
GLHK	39.2	1.0	-0.20	2	-0.10	-0.51%	5.2%
INTI	39.29	0.91	-0.11	1.9	-0.058	-0.28%	4.8%
INM	39.4	2.3	0.0	4.4	0.0	0.0%	11%
CENAM	39.48	0.18	0.080	0.9	0.088	0.20%	2.3%
NMISA	39.65	0.41	0.25	1.1	0.22	0.63%	2.9%
IRMM	39.72	0.85	0.32	1.8	0.18	0.81%	4.5%
LNE	40.0	0.75	0.60	1.6	0.37	1.5%	4.1%
NIST	40.34	0.50	0.94	1.27	0.74	2.4%	3.2%
TUBITAK	41.3	1.4	1.9	2.7	0.69	4.8%	7.0%
INMETRO	54.74	0.94	15	1.9	7.9	39%	4.9%

Table 27. Equivalence statement of Lead in non-contaminated soil for CCQM-K127.

NMI/DI	Reported value <i>xi</i> , (µg/g)	<i>u</i> (<i>xi</i>) (μg/g)	<i>di</i> μg/g	U(di) μg/g	di/U(di)	<i>di/x</i> kcrv %	<i>U(di)/x</i> kcrv %
INTI	214.4	4.6	-16	9.5	-1.7	-6.9%	4.1%
JSI	215	4	-15	8.5	-1.8	-6.7%	3.7%
VNIIM	220	10.6	-11	20	-0.53	-4.7%	8.8%
INM	225	5	-5.4	10	-0.53	-2.3%	4.4%
NMISA	225.1	3.3	-5.3	7.4	-0.72	-2.3%	3.2%
INACAL	227.62	9.56	-2.8	18	-0.15	-1.2%	8.0%
LNE	229	2.5	-1.4	6.2	-0.23	-0.61%	2.7%
IRMM	229.9	4.2	-0.50	8.8	-0.057	-0.22%	3.8%
INMETRO	230.4	2.2	0.00	5.8	0.00	0.0%	2.5%
NIST	230.6	2.1	0.20	5.6	0.036	0.087%	2.4%
CENAM	231.0	1.4	0.60	4.8	0.13	0.26%	2.1%
NRC	232	8.7	1.6	17	0.095	0.69%	7.3%
NMIJ	232.3	1.9	1.9	5.4	0.35	0.82%	2.3%
GLHK	234	5.5	3.6	11	0.32	1.6%	4.8%
NIM	234.0	1.9	3.6	5.4	0.67	1.6%	2.3%
TUBITAK	235	8	4.6	16	0.30	2.0%	6.8%
CSIR-NPLI	237.9	10.42	7.5	20	0.38	3.3%	8.7%

Table 28. Equivalence statement of Lead in contaminated soil for CCQM-K127.

Figure 17. Graph of equivalence statements for CCQM-K127 Pb in contaminated soil. Error bars represent the interval calculated by the expanded uncertainties with the corresponding coverage factor reported by each NMI/DI.

NMI/DI	Reported value <i>xi</i> , (μg/g)	<i>u(xi)</i> (µg/g)	<i>di</i> μg/g	U(di) μg/g	di/U(di)	<i>di/x</i> kcrv %	<i>U(di)/x</i> kcrv %
VNIIM	830.2	29.9	-320	63	-5.1	-28%	5.5%
INTI	848.7	17.4	-301	43	-7.0	-26%	3.7%
NIM	1033	23	-117	51	-2.3	-10%	4.5%
INM	1052	21	-98	48	-2.0	-8.5%	4.2%
LNE	1071	32	-79	66	-1.2	-6.9%	5.8%
NMISA	1122	12	-28	36	-0.78	-2.4%	3.1%
INMETRO	1131.14	8.65	-19	32	-0.58	-1.6%	2.8%
GLHK	1150	48	0.0	94	0.0	0.0%	8.2%
NRC	1150	18	0.0	44	0.0	0.0%	3.8%
CENAM	1150	49	0.0	96	0.0	0.0%	8.4%
NMIJ	1156.5	5.5	6.5	30	0.22	0.57%	2.6%
ANSTO	1157	45	7.0	89	0.079	0.61%	7.7%
JSI	1167	32	17	66	0.26	1.5%	5.8%
TUBITAK	1172	38	22	77	0.29	1.9%	6.7%
NIST	1175.4	6.2	25	31	0.82	2.2%	2.7%
IRMM	1180	170	30	321	0.094	2.6%	28%
INACAL	1214.26	25.50	64	55	1.2	5.6%	4.8%

Tahla 20	Fauivalanca	statement of	Mangangeo ir	non_contaminated	soil for CCOM_K127
I abie 23.		statement of	manyanese n	i non-contaninateu	

Figure 18. Graph of equivalence statements for CCQM-K127 Mn in contaminated soil. Error bars represent the interval calculated by the expanded uncertainties with the corresponding coverage factor reported by each NMI/DI.

6. Conclusions

Generally most of the results of the participants were found consistent for all measurements according to their equivalence statements, excepting some extreme values, which were identified with value of $d_i/U(d_i)$ higher than 1.

Regarding to the methodology of sample preparation, most of the participants used microwave acid digestion methods for sample treatment, except those participants using INAA as measurement technique. For soil samples, it is critical to use mixture of acids and the period of digestion time to obtain total digestion. Technically, it seemed appropriate to use a mix of acids with HNO₃, HCI and HF and in some cases H_3BO_3 to control the excess of HF used for the high content of silicon present in the sample. For Mn and Fe it is observed that some results had high negative bias, in some cases for these elements, a few participants did not use HCI, others used H_2O_2 . For Cd in non-contaminated soil some variation was observed, it could be due to presence of interferences.

With respect to the analytical techniques, a great variety was used, it is observed that for those who use external calibration, greater variability in results was obtained, and for the participants who used isotope dilution with mass spectrometry, better consistency in results are observed.

This key comparison is a mean of providing evidence for practical demonstration of a CCQM comparison Calibration and Measurement Capabilities (CMC) claims for contaminant and others elements, in low and medium content levels in non-contaminated and contaminated matrixes described in category 13.

7. Coordinating laboratories

The CCQM-K127 are coordinated by CENAM (Maria-del-Rocio Arvizu-Torres and J. Velina Lara Manzano) and JSI (Milena Horvat and Radojko Jaćimović).

8. Acknowledgement

The coordinate laboratories would like to thank Dr. M. Sargent, the Chairman of the IAWG/CCQM for his encouragement and guidance through the study. Also, to Dr. Yoshito Mitani N. for their support in the development of this study, Dr. Hugo Gasca for their collaboration in the statistical evaluation of the KCRV and all the staff involved in this project of the Dirección de Análisis Inorgánico of CENAM. The JSI would like to thank Dr. Branka Mihaljević from Rudjer Bošković Institute (RBI), Zagreb, Croatia for irradiation of non-contaminated soil by Co-60 in November 2014.

The contributions from the analysts of participating NMIs/Dis as listed below, are highly appreciated and acknowledged.

Institute	Analysts
ANSTO	Attila Stopic, John Bennett
CENAM	Edith Valle Moya, Francisco Segoviano Regalado, Faviola A. Solís
	González, Griselda Rivera Sánchez, Itzel Santiago Castellanos, M.
	Rocio Arvizu Torres
CSIR-NPLI	Daya Soni, Shankar Gopala Aggarwal
INACAL	Elmer Carrasco, Christian Uribe
INM	Steluța Duță, Mirella Buzoianu
INMETRO	Ana Catalina Palacios Osorio, Emily Silva Dutra, Marcelo Dominguez
	de Almeida, Rodrigo Caciano de Sena
INTI	Gisela Mazzitello, Osvaldo Acosta
IRMM	James Snell, Geert Van Britsom
JSI	Tea Zuliani, Radojko Jacimovic
LNE	Anaïs Rincel
NIM	Haifeng Li, Jingbo Chao
NIST	Savelas A. Rabb, Karen E. Murphy, George C. Caceras
NMIJ	Shin-ichi Miyashita
NMISA	Alex Barzev, Angelique Botha, Maré Linsky
NRC	Indu Gedara Pihillagawa, Lu Yang
TUBITAK	Oktay Cankur, Zehra Çakılbahçe, Süleyman Z. Can
VNIIM	Smirnov Vadim

10. References

- [1] International Standards Organization, ISO Guide 35: Reference materials General and statistical principles for certification, Geneva, Switzerland, 2006.
- [2] CCQM/13-22: CCQM Guidance note: Estimation of a consensus KCRV and associated Degrees of Equivalence, Version: 10, 2013-04-12.
- [3] D. Duewer: A Robust Approach for the Determination of CCQM Key Comparison Reference Values and Uncertainties.

Annex I: Tables of demonstrated core capabilities

Inorganic Core Capabilities Summary Table

CCQM Study: ✓ CCQM-K127 □ CCQM-P162

Institute(s): NRC-CNRC, LNE, NIST, NIM, TUBÍTAK UME, NMISA, NMIJ, CENAM, IRMM

Method: ID-ICP-MS (NRC-CNRC, LNE, NIST, NIM, TUBÍTAK UME, NMISA, NMIJ, CENAM, IRMM)

Analyte(s): Cd (NRC-CNRC, LNE, NIST, NIM, TUBÍTAK UME, NMISA, NMIJ, CENAM, IRMM), Fe (TUBÍTAK UME, NMISA, NMIJ, CENAM), Pb (LNE, NIST, NIM, TUBÍTAK UME, NMISA, NMIJ, CENAM, IRMM)

Instructions:

Capabilities/Challenges	Not tested	Tested	Specific challenges
			encountered
Contamination control and correction All techniques and procedures employed to reduce potential contamination of samples as well as blank correction procedures. The level of difficulty is greatest for analytes that are environmentally ubiquitous and also present at very low concentrations in the sample.	NMIJ (Fe, Cd, Pb)	NRC-CNRC LNE (Cd, Pb) NIST (Cd, Pb) TUBÍTAK UME NMISA (Cd, Fe, Pb) CENAM (Cd, Fe and Pb)	Contamination is controlled by preparing samples in class-10 or class-100 clean room and use of high purity reagents (NRC- CNRC). Contamination control was not a challenge for these materials as the mass fraction levels, even for the non-contaminated soil, were sufficiently high. Mean blank corrections did not exceed 0.05 % (NIST). Blank correction and selected high quality of HF and HNO ₃ (NIM). All sample preparations were performed using ultrapure grade HNO ₃ (TUBÍTAK UME). The contamination was not significant; however, it was controlled by preparing samples and isotopes in class-10/100 clean room and use of high purity reagents (CENAM).
Digestion/dissolution of organic	LNE (Cd, Pb)	IRMM	
matrices	NIM (Cd, Pb)		
All techniques and procedures used	TUBITAK		
to bring a sample that is primarily	UME		

Capabilities/Challenges	Not tested	Tested	Specific challenges encountered
organic in nature into solution suitable for liquid sample introduction to the ICP.	NMISA NMIJ (Fe, Cd, Pb) CENAM (Cd, Fe and Pb)		
Digestion/dissolution of inorganic matrices All techniques and procedures used to bring a sample that is primarily inorganic in nature into solution suitable for liquid sample introduction to the ICP.	NIM (Cd, Pb)	LNE (Cd, Pb) NIST (Cd, Pb) TUBÍTAK UME NMISA (Cd, Fe, Pb) NMIJ (Fe, Cd, Pb) CENAM (Cd, Fe and Pb)	Some residues (SiO ₂) remaining after digestion of the samples (LNE). Colourless residue remained after sample digestion (IRMM). The non-contaminated soil required a perchloric acid digest to bring it completely into solution (NIST). Microwave sample decomposition procedure was applied (TUBÍTAK UME). Closed vessel microwave digestion with a mixture of nitric acid, perchloric acid and hydrofluoric acid was employed. After digestion, the digest was evaporated to remove the silicon as SiF ₆ (NMIJ). The both soils required a microwave acid digestion using a mixture of HCI, HNO ₃ , HF, H ₂ O ₂ and a second step of microwave digestion, where additional H ₂ O ₂ and H ₃ BO ₃ was required to bring it completely into solution with quick redissolved process of the samples in 7 % HCI to avoid precipitation (CENAM), then to re- dissolved.
Volatile element containment All techniques and procedures used to prevent the loss of potentially volatile analyte elements during sample treatment and storage.	LNE (Cd, Pb) NIM (Cd) TUBİTAK UME NMISA NMIJ (Fe, Cd, Pb) CENAM (Cd, Fe and Pb) IRMM	NIM (Pb)	Compared wet digestion and microwave assisted digestion method for Pb (NIM).
Pre-concentration Techniques and procedures used to increase the concentration of the analyte introduced to the ICP. Includes evaporation, ion-exchange, extraction, precipitation procedures, but not vapor generation procedures	LNE (Cd, Pb) TUBÍTAK UME NMISA NMIJ (Fe, Cd, Pb) CENAM (Cd, Fe and Pb)	NIST (Cd)	See matrix separation (NIST).

Capabilities/Challenges	Not tested	Tested	Specific challenges encountered
Vapor generation Techniques such as hydride generation and cold vapor generation used to remove the analyte from the sample as a gas for introduction into the ICP.	TUBÍTAK UME NMISA NMIJ (Fe, Cd, Pb) CENAM (Cd, Fe and Pb) IRMM		
Matrix separation Techniques and procedures used to isolate the analyte(s) from the sample matrix to avoid or reduce interferences caused by the matrix. Includes ion-exchange, extraction, precipitation procedures, but not vapor generation procedures. Techniques and procedures used to isolate the analyte(s) from the sample matrix to avoid or reduce interferences caused by the matrix. Includes ion-exchange, extraction, precipitation procedures, but not vapor generation procedures.	LNE (Cd, Pb), NIM (Pb), TUBİTAK UME, NMISA, NMIJ (Fe, Pb) IRMM	NIST (Cd) NIM(Cd) NMIJ (Cd) CENAM (Cd, Fe and Pb)	The non-contaminated soil required matrix separation to reduce spectral interference on Cd from matrix elements, particularly 8888Zr and Sn (NIST). Adopted different collision gas and membrane desolvation technique to reduce polyatomic and oxide interference to Cd (NIM). Co-precipitate separation was performed for sample matrix such as Al and Fe compounds. The method has been published in a journal (Inagaki et al., J. Anal. At. Spectrum. 2001, 16, 1370) (NMIJ). Anion exchange separation for Cd, Fe and Pb, to minimized spectral interferences from matrix elements, for Cd: Zr, Sn, Nb, Mo, Zn; for Fe: Ni and Cr; and for all elements to avoid matrix effects, which provide a high dissolved solid in the sample introduction system (CENAM).
Spike equilibration with sample The mixing and equilibration of the enriched isotopic spike with the sample.		NRC-CNRC (Cd) LNE (Cd, Pb) NIST (Cd, Pb) TUBÍTAK UME NMISA (Cd, Fe, Pb) NMIJ (Fe, Cd, Pb) CENAM (Cd, Fe and Pb) IRMM	Enriched isotope was spiked before the microwave digestion. Samples were subject to rigorous digestion procedures (microwave) to ensure complete dissolution of the sample enabling equilibration of the enriched isotope spike with the sample (NIST, NRC-CNRC, LNE, TUBÍTAK UME, NMIJ, CENAM). The contaminated sample was digested and diluted before spiking, as the level was too high for our spike materials. Two CRMs (ERM-CC141 and BCR- 320R) were measured together with the samples (IRMM).
Signal detection The detection and recording of the analyte isotope signals. The degree of difficulty increases for analytes present at low concentrations, of low isotopic abundance, or that are poorly ionized.	LNE (Cd, Pb) TUBÍTAK UME, NMISA (Fe) NMIJ (Fe, Cd, Pb)	NRC-CNRC (Cd) NIST (Cd, Pb) NIM (Cd, Pb) NMISA (Cd, Pb) CENAM (Cd,	Adequate sensitivity (NRC- CNRC). Samples were analyzed in both standard mode and collision cell kinetic energy discrimination mode (CC/KED mode) for Cd. In comparison to standard mode, CC/KED mode has the advantage

Capabilities/Challenges	Not tested	Tested	Specific challenges encountered
		Fe and Pb)	of lower molecular ion formation, but the disadvantage of lower sensitivity. For both modes, parameters were optimized using a tune solution containing indium (In) and cerium (Ce). The operating parameters were first adjusted to obtain maximum sensitivity for ¹¹⁵ In and then further adjusted until the minimum achievable ¹⁵⁶ CeO ⁺ / ¹⁴⁰ Ce ⁺ ratio was obtained (NIST). Adequate sensitivity with the operating parameters, which first adjusted to obtain maximum sensitivity for ¹¹⁵ In and then further adjusted until the minimum achievable ¹³⁷ Ba ¹⁶ O/ ¹³⁷ Ba and ¹³⁷ Ba ⁺⁺ / ¹³⁷ Ba ratio was obtained (CENAM).
Memory effect Any techniques used to avoid, remove or reduce the carry-over of analyte between consecutively measured standards and/or samples.	LNE (Cd, Pb) NIM (Cd, Pb) NMISA (Cd, Fe, Pb) NMIJ (Fe, Cd)	NRC-CNRC (Cd) NIST (Cd, Pb) TUBÍTAK UME NMIJ (Pb) CENAM (Cd, Fe and Pb)	Rigorous rinsed between each measurement of samples with 2 % HNO ₃ solution (CENAM, NRC- CNRC). Before analysis, a washing time was optimized for minimizing memory effect. Consequently, three minutes washing was performed (NMIJ). Cones were cleaned and new sample introduction tubing was used to mitigate element carryover and reduce Cd and Pb background coming from the instrument (NIST). For all isotopic measurements, background checks were performed between each run. No significant memory effect was observed for the elements (TUBÍTAK UME). Normal rinse delays employed (NMISA).
Correction or removal of isobaric/polyatomic interferences Any techniques used to remove, reduce, or mathematically correct for interferences caused by mass overlap of analyte isotopes with isobaric or polyatomic species. Includes collision cell techniques, high resolution mass spectrometry, or chemical separations. The relative concentrations and sensitivities of the analyte isotopes and the interfering species will affect the degree of difficulty.	NIM (Pb)	NRC-CNRC (Cd) LNE (Cd, Pb) NIM (Cd) TUBITAK, UME, NMISA (Cd, Fe, Pb) NMIJ (Fe, Cd, Pb) CENAM (Cd, Fe and Pb) IRMM	Selected ratio ¹¹³ Cd/ ¹¹¹ Cd was measured in the unspiked sample is in agreement with IUPAC value, confirming no significant interferences present (NRC- CNRC). Choice of the isotope free of interferences specially for Cd. Subtraction of a closed matrix matching blank (LNE). For removal see 'Matrix separation'. Correction algorithms and instrumental methods of interference reduction (collision

Capabilities/Challenges	Not tested	Tested	Specific challenges
			encountered
			cell/kinetic energy discrimination mode) were employed for Cd. Corrections for spectral inferences stemming from Zr, Mo, In, and Sn were applied
			For Pb isotopic composition measurements correction for isobaric interface from ²⁰⁴ Hg on ²⁰⁴ Pb was applied (NIST).
			Adopted He as collision gas and membrane desolvation technique to reduce ⁹⁵ Mo ¹⁶ O, ⁹⁴ Mo ¹⁶ O ⁹⁵ Zr ¹⁶ O interference to ¹¹¹ Cd and ¹¹⁰ Cd (NIM).
			Iron measurements were performed at medium resolution mode of HR-ICP-MS. Polyatomic interferences of Zr and Mo oxides on Cd signals were checked and corrected whenever necessary by measuring the oxide formation rates. Isobaric interferences on Cd were also corrected by mathematical equations (TUBÍTAK UME).
			Cd: minimum correction for molybdenum oxide and tin isobaric interferences on ¹¹¹ Cd and ¹¹⁴ Cd; Fe: Analysis in medium resolution, to avoid Ar-molecular interferences. Pb: Correction for potential Hg interferences (NMISA).
			Before analysis, the presence of potential interferences was cross- checked using high resolution ICP-MS and quadrupole ICP-MS with a collision/reaction cell Eor Fe, collision/reaction cell technique was used for removal of interferences. For Cd, interferences were removed by the co-precipitation separation method. For Pb, interference of ²⁰⁴ Hg with ²⁰⁴ Pb was removed during the evaporation process in the digestion (NMIJ).
			For Cd, Fe and Pb it was applied a removal of matrix separation (see matrix separation) and verify the following interferences: Cadmium measured ratio

Capabilities/Challenges	Not tested	Tested	Specific challenges
			encountered
			 ¹¹¹Cd/¹¹⁴Cd in low resolution mode required a minimum correction for: ¹¹⁴Cd: molybdenum oxide and ¹¹⁴Sn isobaric interferences. ¹¹¹Cd: Mo and Zr oxides.
			Measure ratio ⁵ /Fe/ ⁵⁶ Fe in medium resolution mode was required, to avoid the molecular interference of ⁴⁰ Ar ¹⁶ O in ⁵⁶ Fe. Lead required the correction for potential Hg interferences of ²⁰⁴ Hg
			in ²⁰⁴ Pb (CENAM). For Cd measurement the ICP MS was optimised to minimise MoO ⁺ formation. Cd signal correction not found to be necessary as the potential level of interference would not influence the uncertainty budget. Levels of In were also measured and found to be insignificant. For Pb molar mass determination, ²⁰² Hg was measured and used to correct the overlap of ²⁰⁴ Hg on the
			m/z 204 signal (IRMM).
Mass bias/fractionation control and	NIM (Cd, Pb)	(yes) NIST (Cd, Pb) TUBÍTAK UME NMISA (Cd, Fe, Pb) NMIJ (Fe, Cd, Pb) CENAM (Cd, Fe and Pb)	producer of the ICP/MS (LNE). Detector dead-time was experimentally determined using natural gadolinium solutions with mass fractions that resulted in count rates spanning the count rate range from 1 x 105 counts per second (cps) to 9 x 105 cps. The measured dead-time was 37 ns (NIST). Deadtime for the detector was determined before measurements. The deadtime correction was activated during measurements (TUBÍTAK UME). Double IDMS with matching of sample and standard concentrations (NMISA). Counting rate was controlled for minimizing the effect of detector deadtime, typically under 1000000 cps (NMIJ). It was controlled by using the ion count rates countered (CENAM).
Mass blas/fractionation control and correction Techniques used to determine, monitor, and correct for mass bias/fractionation.	CENAM (Cd, Fe)	NRG-CNRC (yes) LNE (Cd, Pb) NIST (Cd, Pb) NIM (Cd, Pb) TUBITAK UMF	Use of high purity standard solution for Cd and CRM 982 for Pb (LNE). A solution of pure Cd with natural isotopic composition and a solution of SRM 982 Equal-Atom

Capabilities/Challenges	Not tested	Tested	Specific challenges
			encountered
		NMISA (Cd,	Lead (Isotopic) Standard was
		Fe, Pb)	used to measure the mass bias
		NMIJ (Fe, Cd,	correction factor. The mass bias
		Pb)	correction factor was measured at
		CENAM (Pb)	the beginning of the analysis
		IRMM	sequence and then used to
			correct the ratio of a spike
			calibration sample measured
			inimediately alterward. The spike
			ratio similar to the spiked test
			nortions and was re-measured
			throughout the analysis. It was
			used to correct the blanks
			remaining calibration samples
			test portions and controls for mass
			bias and any subsequent
			instrument drift. Drift was
			assessed every three samples
			and a correction applied by
			assuming it to be linear with time.
			A solution of SRM 981 Common
			Lead Isotopic Standard was used
			to measure the mass bias
			correction factor for composition
			samples (NIST).
			Mass bias correction factors were
			determined between runs and
			Procketing technique was used for
			mass bias correction (TLIBÍTAK
			LIME)
			Mass bias standards measured
			throughout sequence and
			correction applied (NMISA).
			For Fe and Cd, natural abundance
			solutions were used for correcting
			mass bias. For Pb, NIST SRM
			981 and 982 were used for
			correcting mass bias (NMIJ).
			SRM-981 lead natural isotopic
			standard used to measure the
			mass bias correction factor for
			somplos SPM 022 agus atom
			samples. SINI-802 equa- alom
			used for determining the mass
			bias correction factors for Pb
			ratios in the blends (R_{bx} and R_{bz})
			(CENAM).
			For Cd, sample blend
			measurements were bracketed
			within the measurement sequence
			with measurements of unspiked
			samples. These were used to
			correct for mass bias. For Pb an
			internal standard of NIST997 (TI)

Canabilities/Challenges	Not tested	Tostod	Specific challenges
oupublitics/onullenges	Not tested	TCStCu	encountered
			was used to correct for mass bias
			using a linear model (IRMM).
Spike calibration Techniques used to determine the analyte concentration in the enriched isotopic spike solution.	NMISA (Cd, Fe, Pb) IRMM	NRC-CNRC (yes) LNE (Cd, Pb) NIST (Cd, Pb) TUBİTAK UME NMIJ (Fe, Cd, Pb) CENAM (Cd, Fe and Pb)	Specific challenges encountered was used to correct for mass bias, using a linear model (IRMM). In house accurate preparation of the high purity standard solutions for reverse ID (LNE). Reverse IDMS was used, employing two calibration solutions, which for Cd were SRM 3108 Cadmium (Cd) Standard Solution, Lot No. 130116, and a solution prepared in-house from SRM 746 Cadmium-Vapor Pressure and for Pb were SRM 3128 Lead (Pb) Standard Solution (Lot # 101026) and a solution prepared in-house from high purity (99.999, vendor assay) Pb metal (NIST). Lead measurements were performed using double IDMS technique. Concentration of enriched isotopic solution was calibrated via primary certified reference material (TUBÍTAK UME). Double Isotope Dilution used
			(NMISA). Double ID procedure was
			employed (NMIJ). Measurements were performed by exact matching double ID-ICPMS, with correction of Pb and not ratio correction for Cd and Fe due the matching of sample and standard. The analytical challenge is to match the isotope ratio in the blends (sample and the primary standard) (CENIAM)

Inorganic Core Capabilities Summary Table

CCQM Study: ✓ CCQM-K127 □ CCQM-P162

Institute(s): LNE, GLHK, NIM, TUBÍTAK UME, NMISA, NMIJ, CENAM, INMETRO, INTI, VNIIM, JSI, INM.

Method: ICP-MS (without isotope dilution) LNE, GLHK, NIM, TUBÍTAK UME, NMISA, NMIJ, CENAM (IE-ICP-MS), INMETRO, INTI, VNIIM, JSI, INM.

Analyte(s): As (LNE, GLHK, NIM, TUBÍTAK UME, NMISA, NMIJ, CENAM, INMETRO, INTI, VNIIM, JSI, INM), Cd (GLHK, INTI, VNIIM, JSI, INM), Fe (LNE, VNIIM, JSI), Mn (LNE, TUBÍTAK UME, NMISA, NMIJ, CENAM, VNIIM, JSI), Pb (GLHK, INTI, VNIIM, JSI, INM).

Instructions:

Capabilities/Challenges	Not tested	Tested	Specific challenges encountered
Contamination control and correction All techniques and procedures employed to reduce potential contamination of samples as well as blank correction procedures. The level of difficulty is greatest for analytes that are environmentally ubiquitous and also present at very low concentrations in the sample.	NMISA (Mn) NMIJ (Mn, As) VNIIM	LNE (As, Fe, Mn) GLHK, NIM TUBÍTAK UME (As) CENAM (As and Mn) INMETRO (As) INTI, JSI (As, Cd, Fe, Pb, Mn) INM (Cd, As)	High purity reagents needed for As and Mn (LNE). Blank correction and selected high quality of HF and HNO ₃ (NIM). In order to minimize the possible contamination of sample, suprapure grade reagents and pre-cleaned PFA labwares were used during the analysis (TUBÍTAK UME). The contamination was not significant, however it was controlled by preparing samples in class-10 or class-100 clean room and use of high purity reagents (CENAM). Adopted procedures to avoid contamination included: in-house distilled acid for purification and blank control (INMETRO). The blank values were under the limits of detection (JSI). For each digestion, a separate blank sample was included. The blank sample was included. The blank samples containing all acids, without the sample itself, went through all analytical procedure stages and measured.

Capabilities/Challenges	Not tested	Tested	Specific challenges encountered
			Contamination of blanks/samples is critical for Cd and As at low concentration (INM).
Digestion/dissolution of organic matrices All techniques and procedures used to bring a sample that is primarily organic in nature into solution suitable for liquid sample introduction to the ICP.	LNE (As, Fe, Mn) NIM TUBÍTAK UME NMISA NMIJ (Mn, As) CENAM (As and Mn) INMETRO (As) VNIIM JSI (As, Cd, Fe, Pb, Mn) INM		Strong control of environment to avoid Fe contamination (LNE).
Digestion/dissolution of inorganic matrices All techniques and procedures used to bring a sample that is primarily inorganic in nature into solution suitable for liquid sample introduction to the ICP.	JSI (As, Cd, Fe, Pb, Mn)	LNE (As, Fe, Mn) GLHK NIM TUBÍTAK UME NMISA (As, Mn) NMIJ (As, Mn) CENAM (As, Mn) INMETRO (As) INTI VNIIM INM	Some residues (SiO ₂) remaining after digestion of the samples (LNE). Compared different mixture of acids and digestion temperature (NIM). Microwave sample decomposition procedure was applied (TUBÍTAK UME). Closed vessel microwave digestion with a mixture of nitric acid, perchloric acid and hydrofluoric acid was performed. After digestion, the digest was evaporated to remove the silicon as SiF ₆ (NMIJ). The both soils required a microwave acid digestion using HCl, HNO ₃ , HF, H ₂ O ₂ and a second step of microwave digestion, where additional H ₂ O ₂ and H ₃ BO ₃ were required to bring it completely into solution with quick redissolved process of the samples in 5 % HCl to avoid precipitation (CENAM). HF acid was added in the microwave digestion procedure, but in the digested samples was observed a small amount of residue. This residue was not dissolved by adding more HF (INMETRO). Close vessel microwave acid digestion (MARS-5). After microwave acid digestion and dilution by deionized water up to 50 ml, used ashless filter, to separate the insoluble residue Approx.0.5 g of soil samples taken. Microwave digestion. Samples completed digested with HNO ₃ (5 mL)+HCl(2 mL) +HF(3 mL) (INM). Digestion program and conditions validated against ERM CC141 (VNIIM)

Capabilities/Challenges	Not tested	Tested	Specific challenges encountered	
Volatile element containment All techniques and procedures used to prevent the loss of potentially volatile analyte elements during sample treatment and storage.	LNE (As, Fe, Mn) GLHK TUBÍTAK UME NMISA (Mn) NMIJ (Mn) CENAM (Mn)	NIM NMISA (As) NMIJ (As) INMETRO (As) CENAM (As) INTI VNIIM INM	Compared wet digestion and microwave assisted digestion method (NIM). Closed vessel microwave digestion was performed to prevent the loss of As. Quality control materials of similar matrix (METRANAL 31 and 32) were used to verify recovery of As (NMIJ). A digestion procedure with closed vessel microwave acid digestion was applied to avoid volatility problems for As a standard addition method was used to check the recovery (CENAM). Quality controls were used to evaluate As loss (INMETRO). Close vessel digestion. Cooling to room temperature (VNIIM). Different digestion conditions selected for As (digestion in two consecutive days). Closed vessels (INM).	
Pre-concentration Techniques and procedures used to increase the concentration of the analyte introduced to the ICP. Includes evaporation, ion-exchange, extraction, precipitation procedures, but not vapor generation procedures.	LNE(As, Fe, Mn) GLHK NIM TUBÍTAK UME NMISA NMIJ (Mn, As) CENAM (As,Mn) INTI VNIIM JSI (As, Cd, Fe, Pb, Mn) INM	INMETRO (As)	Digested sample were evaporated to eliminate HF (INMETRO).	
Vapor generation Techniques such as hydride generation and cold vapor generation used to remove the analyte from the sample as a gas for introduction into the ICP.	GLHK NIM TUBÍTAK UME NMISA NMIJ (Mn, As) CENAM (As, Mn) INMETRO (As) INTI VNIIM JSI (As, Cd, Fe, Pb, Mn) INM			
Matrix separation Techniques and procedures used to isolate the analyte(s) from the sample matrix to avoid or reduce interferences caused by the matrix. Includes ion- exchange, extraction, precipitation procedures, but not vapor generation procedures. Techniques and procedures used to isolate the analyte(s)	LNE (As, Fe, Mn) GLHK TUBÍTAK UME NMISA NMIJ (Mn, As) CENAM (As, Mn) INMETRO (As) INTI VNIIM JSI (As, Cd, Fe, Pb, Mn)	NIM	Selection of isotopes; recommended correction for possible interferences caused by the matrix (NIM)	

Capabilities/Challenges	Not tested	Tested	Specific challenges encountered
from the sample matrix to avoid or reduce interferences caused by the matrix. Includes ion- exchange, extraction, precipitation procedures, but not vapor generation procedures.			
Calibration of analyte concentration The preparation of calibration standards and the strategy for instrument calibration and standard additions procedures.		LNE (As, Fe, Mn) GLHK NIM TUBÍTAK UME NMISA (Mn, As) NMIJ (Mn, As) CENAM (As and Mn) INMETRO (As) INTI VNIIM (Mn (55), Fe (56), As (75), Cd (111), Pb) JSI (As, Cd, Fe, Pb, Mn) INM	Accurate gravimetric preparation of high purity standard solutions for standard addition method or external calibration (LNE). Gravimetric Standard Addition (GLHK). Internal standard was used and compared with standard addition method (NIM). Matrix matched standard addition method was used for the calibration. In order to monitor and minimize the drift on the signal, internal standard was used (TUBÍTAK UME). External calibration for both As and Mn. Standard Addition for As (NMISA). External calibration was performed. JCSS standard solutions were used to prepare calibration standards (NMIJ). Internal standard with single point standard addition was used. Measurement was performed in high-resolution mode, the ratios measured were ⁷⁵ As/ ⁷¹ Ga and ⁵⁵ Mn/ ⁷² Ge. The analytical challenge was to find the best internal standard, as a result for As was used an internal standard present in the sample and it was confirmed using an external internal standards (¹⁰³ Rh) (CENAM). The matrix complexity was a challenging and does not allow to use internal standard (INMETRO). Linear calibration (5 points) prepared from multielement standard solution by volumetric method. Tor measure Fe, sample was additional diluted 1:10 (VNIIM). External calibration; bracketing; Preparation of calibration standards were prepared gravimetrically (JSI). External calibration; bracketing; Preparation of calibration standard by weight. ERM CC141 used for validation (INM).
The detection and recording of the analyte isotope signals. The degree of difficulty increases for analytes present at low	TUBÍTAK UME NMIJ (Mn, As) INTI VNIIM	NIM NMISA (As) CENAM (As, Mn)	As analysis performed in High Resolution mode, which required very good instrument sensitivity (NMISA).

Capabilities/Challenges	Not tested	Tested	Specific challenges encountered
concentrations, of low isotopic abundance, or that are poorly ionized.	JSI (As, Cd, Fe, Pb, Mn)	INM	Instrument optimization; good detection limits; Reliable analytical signals ERM CC141 used for validation (INM).
Memory effect Any techniques used to avoid, remove or reduce the carry-over of analyte between consecutively measured standards and/or samples.	NIM NMISA(Mn) NMIJ (Mn, As) INMETRO (As)	LNE (Fe) GLHK TUBÍTAK UME NMISA (As) CENAM (As, Mn) INTI VNIIM JSI (As, Cd, Fe, Pb, Mn) INM	Necessity of cleaning step between sample solutions analysis (LNE). Tested by checking the blank signals between runs. No significant effect was observed (TUBÍTAK UME). Memory effect from As requiring long wash-out time between samples and careful blank correction (NMISA). The cones were cleaned and it was applied a rinse between each measurement of samples with 2 % HNO ₃ solution, however during the measuring process some still some significant memory effect was observed. The internal standard with single point standard addition method helped to correct a significant memory effect (CENAM). Use washing solution between samples measuring (5% HNO ₃) (VNIIM). Washing procedures with 5 % and 1 % HNO ₃ , and MilliQ water were inserted between every sample measurement (JSI). Washing procedures: before and after each measurement, 2 % HNO ₃ (INM).
Correction or removal of isobaric/polyatomic interferences Any techniques used to remove, reduce, or mathematically correct for interferences caused by mass overlap of analyte isotopes with isobaric or polyatomic species. Includes collision cell techniques, high resolution mass spectrometry, or chemical separations. The relative concentrations and sensitivities of the analyte isotopes and the interfering species will affect the degree of difficulty.	INTI	LNE (As, Fe, Mn) GLHK NIM TUBÍTAK UME NMISA (As, Mn) NMIJ (Mn, As) CENAM (As) INMETRO (As) VNIIM JSI (As, Cd, Fe, Pb, Mn) INM	Use of the collision cell with He (3 mL/min) to remove ArCl isobaric interferences on ⁷⁵ As, ArNH on ⁵⁵ Mn and ArO on ^{54,56,57} Fe (LNE). Adopted different reaction/ collision gas and to reduce ⁴⁰ Ar ³⁵ Cl and other polyatomic interference to ⁷⁵ As (NIM). As measurements were performed at high resolution mode of the HR-ICP-MS. The signals for the internal standard were corrected for isobaric interferences (TUBÍTAK UME). As analysis in High Resolution required, due to Ar-Cl interference on the ⁷⁵ As signal. Mn analyses were performed in Medium Resolution to avoid poly-atomic isobaric interferences (mostly related to Argon species) (NMISA). Before analysis, the presence of potential interferences was cross-checked using high resolution ICP-MS with a

Capabilities/Challenges	Not tested	Tested	Specific challenges encountered
			collision/reaction cell. Collision/reaction cell technique was used for removal of interferences (NMIJ). To avoid the polyatomic interferences on As and Mn high and medium resolution mode were used respectively. For non- contaminated soil, the low concentrations affected the sensitivity of the arsenic, due high contents of matrix components (high dissolved solids), which affected the degree of difficulty, and as a result some background was obtained, so it was needed some adjustments, which increased the measurement challenge in the instrument (CENAM). Polyatomic interfering species were studied and after dilutions the effect from chloride was not significant (INMETRO). Use He in ORS (Octopole Reaction System, Agilent 8800) (VNIIM). Reaction-collision cell was used for the removal of interferences (JSI). Instrument correction for isobaric/polyatomic interferences. To reduce the polyatomic interference of ⁴⁰ Ar ³⁵ Cl, high resolution mode was used (INM).
Correction or removal of matrix- induced signal suppression or enhancement <i>Chemical or instrumental</i> procedures used to avoid or correct for matrix-induced signal suppression or enhancement.	LNE(As, Mn) GLHK INMETRO (As) INTI VNIIM	LNE(Fe) NIM TUBÍTAK UME NMISA (As, Mn) NMIJ (Mn, As) CENAM (As and Mn) JSI (As, Cd, Fe, Pb, Mn) INM	Tested but no effect in regards of the high level of dilution for Fe. For As and Mn, standard addition method overcomes matrix effect (LNE). Adopted standard addition to correct possible bias of matrix effect (NIM). Matrix matched standard additions method was applied during the measurements (TUBÍTAK UME). The use of an internal standard was critical due to the soil matrix and the acid combination (HNO ₃ , HCI, HF, H ₃ BO ₃) required to achieve digestion of the sample (NMISA). Internal standardization using Rh and In with no interferences with the analytes was performed for compensating matrix-induced effects (NMIJ). Internal standard with single point standard addition was used as calibration method to compensate

Capabilities/Challenges	Not tested	Tested	Specific challenges encountered
			for any matrix effects. In order to reduce the polyatomic interference of arsenic from ⁴⁰ Ar ³⁵ Cl, it was used high-resolution mode; this affected the sensitivity in the instrument for ⁷⁵ As isotope and this increased the degree of difficulty in the measurement. For ⁵⁵ Mn the measurement was made in medium resolution mode, to avoid the interferences from Cd ⁺⁺ and ³⁹ K ¹⁶ O (CENAM). Reaction-collision cell was used for the removal of interferences. Internal standards (Y, Rh, Ir and In) were used (JSI). Sufficient dilution (INM)
Detector deadtime correction Measurement of, and correction for, ion detector deadtime. Importance increases in situations where high ion count rates are encountered.	LNE (As, Fe, Mn) NIM TUBÍTAK UME INMETRO (As) INTI VNIIM JSI (As, Cd, Fe, Pb, Mn)	GLHK NMISA (As, Mn) NMIJ (Mn, As) INM CENAM	Use of the calculated value by the producer of the ICP/MS (LNE). Counting rate was controlled for minimizing the effect of detector deadtime, typically under 1000000 cps (NMIJ, CENAM). Instrument optimization as recommended (INM).
Mass bias/fractionation control and correction Techniques used to determine, monitor, and correct for mass bias/fractionation.	GLHK NIM TUBÍTAK UME NMIJ (Mn, As) INMETRO (As) JSI (As, Cd, Fe, Pb, Mn)	NMISA (As, Mn) INTI VNIIM INM	For measuring Pb used correction equation: Pb = ²⁰⁸ Pb + ²⁰⁷ Pb + ²⁰⁶ Pb + ²⁰⁴ Pb SemiQuant analysis to ensure natural isotope abundance (VNIIM). Instrument optimization; tuning solution (INM).

Inorganic Core Capabilities Summary Table CCQM Study: ✓ CCQM-K127 □ CCQM-P162

Institute(s): NRC-CNRC, GLHK, NIST, NIM, INMETRO, INTI, CSIR-NPLI, IRMM

Method: ICP-OES

Analyte(s): As (NRC-CNRC, INMETRO, CSIR-NPLI, IRMM), Cd (NRC-CNRC, INMETRO, CSIR-NPLI), Fe (NRC-CNRC, GLHK, NIST, NIM, INMETRO, INTI, CSIR-NPLI, IRMM), Mn (NRC-CNRC, GLHK, NIST, IRMM, NIM), Pb (NRC-CNRC, INMETRO, CSIR-NPLI)

Instructions:

Capabilities/Challenges	Not tested	Tested	Specific challenges encountered
Contamination control and correction All techniques and procedures employed to reduce potential contamination of samples as well as blank correction procedures. The level of difficulty is greatest for analytes that are environmentally ubiquitous and also present at very low concentrations in the sample.		NRC-CNRC (Fe, As, Cd, Pb and Mn) GLHK NIST (Fe, Mn) NIM INMETRO (As, Cd, Pb, Fe) INTI CSIR-NPLI (As, Cd, Fe, Pb) IRMM	Contamination is controlled by preparing samples in class-10 or class-100 clean room and use of high purity reagents (NRC-CNRC). Microwave vessels were cleaned and rinsed thoroughly between digestions. Blanks were also run through the entire procedure to identify if contamination occurred (NIST). Blank correction (NIM). Adopted procedures to avoid contamination included: in-house distilled acid for purification and blank control (INMETRO). Minimum of three Procedural blanks were taken to avoid all the possible contamination (CSIR-NPLI).
Digestion/dissolution of organic matrices All techniques and procedures used to bring a sample that is primarily organic in nature into solution suitable for liquid sample introduction to the ICP.	NIST (Fe, Mn) NIM	GLHK INMETRO (As, Cd, Pb, Fe) INTI CSIR-NPLI (As, Cd, Fe, Pb) IRMM	Dissolution of residue was a challenge (CSIR-NPLI).
Digestion/dissolution of inorganic matrices All techniques and procedures used to bring a sample that is primarily	NIM	GLHK NIST (Fe, Mn) INMETRO (As, Cd, Pb, Fe) INTI	After microwave digestion, Fe was observed to be lower than expected in the control soil samples SRMs 2709a and 2711a. Hydrochloric acid (4 mL) was added to the sample (prior to digestion) in

Capabilities/Challenges	Not tested	Tested	Specific challenges encountered
inorganic in nature into solution suitable for liquid sample introduction to the ICP.		CSIR-NPLI (As, Cd, Fe, Pb) IRMM	addition to the HNO ₃ and HF used previously. The Fe was observed to be in control for this procedure (NIST). HF acid was added in the microwave digestion procedure, but in the digested samples was observed a small amount of residue. This residue was not dissolved by adding more HF (INMETRO). After digestion (HNO ₃ + HF + HCl, microwave), dissolution of residues were a challenge. All the samples were filtered before introduction to ICP OES (CSIR- NPLI). Colourless residue remained after sample digestion (IRMM).
Volatile element	GLHK NIST (Fe. Mp)	INMETRO (As)	Quality controls were used to evaluate As
All techniques and procedures used to prevent the loss of potentially volatile analyte elements during sample treatment and storage.	NIM INMETRO (Cd, Pb, Fe) IRMM	CSIR-NPLI (As)	After microwave digestion evaporation of HF and acid was done using waterbath (CSIR-NPLI).
Pre-concentration Techniques and procedures used to increase the concentration of the analyte introduced to the ICP. Includes evaporation, ion- exchange, extraction, precipitation procedures, but not vapor generation procedures.	GLHK NIST (Fe, Mn) NIM INTI CSIR-NPLI (Not required) IRMM	INMETRO (As, Cd, Pb, Fe)	Digested sample were evaporated to eliminate HF (INMETRO).
Vapor generation Techniques such as hydride generation and cold vapor generation used to remove the analyte from the sample as a gas for introduction into the ICP.	GLHK NIST (Fe, Mn) NIM INMETRO (As, Cd, Pb, Fe) INTI CSIR-NPLI IRMM		
Matrix separation Techniques and procedures used to isolate the analyte(s) from the sample matrix to avoid or reduce interferences caused by the matrix. Includes ion- exchange, extraction, precipitation procedures, but not vapor generation procedures. Techniques and procedures used to isolate the analyte(s) from the sample matrix to avoid or reduce interferences caused by the matrix. Includes ion-exchange	GLHK NIST (Fe, Mn) NIM INMETRO (As, Cd, Pb, Fe) INTI CSIR-NPLI (Not Tested) IRMM		

Capabilities/Challenges	Not tested	Tested	Specific challenges encountered
extraction, precipitation procedures, but not vapor generation procedures.			
Calibration of analyte concentration The preparation of calibration standards and the strategy for instrument calibration. Includes external calibration and standard additions procedures.		NRC-CNRC GLHK NIST (Fe, Mn) NIM INMETRO (As, Cd, Pb, Fe) INTI CSIR-NPLI (As, Cd, Fe, Pb) IRMM	Good linear calibration was obtained (NRC-CNRC). Gravimetric Standard Addition (GLHK). Single point standard addition was used as the calibration method to compensate for any matrix effects. The spike was typically 2x greater than the sample analyte mass fraction (NIST). Used external calibration method, and QC solution was used during determination (NIM). As all elements were in different ranges, the calibration standards of all ranges according to the expected concentration of analyte were prepared. Fe concentration was very high. Multipoint external calibration was used for As, Cd and Pb. Bracketing method was used for Fe (CSIR- NPLI).
Signal detection The detection and recording of the analyte signals. The degree of difficulty increases for analytes present at low concentrations, or that are have weak emission lines	INMETRO (Cd, Pb) INTI	NRC-CNRC (Fe, As, Cd, Pb and Mn) GLHK NIST (Fe, Mn) NIM INMETRO (As, Pb) CSIR-NPLI (As, Cd, Fe, Pb) IRMM	With adequate signals but Cd in non- contaminated soil is low and thus it was measured using ICPMS (NRC-CNRC). Blanks were typically < 100 cps and the samples were ≥ 8000 cps for both Fe and Mn lines with well-defined peaks (NIST). As and Pb require more attention due weak emission lines. The conditions were optimized to have an optimal signal and work with the plasma under robust conditions (INMETRO). Concentration in blanks was too low to be detected (CSIR-NPLI). For all elements, external calibration was used. For As, a set of 5 standards was made with concentrations between 0.07 and 0.63 mg/kg and a linear calibration function was used. For Fe, 5 standards with concentrations between 0.88 and 9 mg/kg and linear calibration and for Mn, 5 standards with concentrations between 0.92 and 8.27 mg/kg and linear calibration (IRMM).
Memory effect Any techniques used to avoid, remove or reduce the carry-over of analyte between consecutively measured standards and/or samples.	NIM	NRC-CNRC (Fe, As, Cd, Pb and Mn) GLHK NIST (Fe, Mn) INMETRO (As, Cd, Pb, Fe) INTI CSIR-NPLI (As, Cd, Fe, Pb) IRMM	Not significant, rinsed with 2 % HNO ₃ solution (NRC-CNRC). Rinse times were (50 – 60) s. There was no evidence of memory effect from the standards or samples (NIST). Blank was run in-between consecutive measurements to avoid memory effects. It took time in case of Fe because of high concentration (CSIR-NPLI).

Capabilities/Challenges	Not tested	Tested	Specific challenges encountered
Complex spectral backgrounds Any techniques used to remove, reduce, or mathematically correct for interferences caused by the overlap of analyte emission lines with atomic, ionic, or molecular emission from matrix components. The relative concentrations and sensitivities of the analyte and the interfering species will affect the degree of difficulty. Samples containing high concentration matrix components with large numbers of emission lines or molecular bands may increase the measurement challenge.	GLHK INTI CSIR-NPLI	NRC-CNRC (Fe, As, Cd, Pb and Mn) NIST (Fe, Mn) NIM INMETRO (As, Cd, Pb, Fe) IRMM	Choose wave lines without significant interference, inter element correction was applied (NRC-CNRC). Single point standard addition was used as the calibration method to compensate for any matrix effects. The spectra were also examined to observe if interferences or background points needed adjustments (NIST). As and Pb require special attention due spectral interferences. The spectral interference for As (189 nm) was avoid using an alternative wavelength and for Pb (220 nm) the signal was optimized and it allowed to minimize the spectral interference (INMETRO). The spectral background was checked for each of the samples for each monitored line. For As, Fe and Mn, two spectral lines were monitored and the results compared to ensure that they matched. For As, a 20 % difference between the two spectral lines was observed. From the recovery of the control sample, it was determined that the measurement line was free of interference. The results were reported (IRMM).
Correction or removal of matrix-induced signal suppression or enhancement <i>Chemical or instrumental</i> procedures used to avoid or correct for matrix-induced signal suppression or enhancement. High concentrations of acids, dissolved solids, or easily ionized elements will increase the degree of difficulty.	GLHK	NRC-CNRC (Fe, As, Cd, Pb and Mn) NIST (Fe, Mn) NIM INMETRO (Cd, Pb, Fe) INTI CSIR-NPLI (As, Cd, Fe, Pb) IRMM	Standard additions calibration was applied (NRC-CNRC). Single point standard addition was used as the calibration method to compensate for any matrix effects. Digested samples were diluted by at least a factor of 100 which could also aid in diminishing the impact of the matrix (NIST). Evaluated matrix and acid effect to signal during determination (NIM). Plasma was operated under robust conditions and samples were diluted to reduce matrix effect (INMETRO). Acid concentration was a big challenge specially HF as it may destroy Torch of ICP and before making analyte solutions, the digested solutions were wet-dried at water bath to reduce the acid concentration. Specific spectral lines (characteristic wavelengths) were selected a metal determination such that at least determined metals are not interfere each other (CSIR- NPLI). The acid content and composition of standards was matched to that of the samples by measuring the density of diluted extracts and matching the density of the nitric acid solution used to prepare the standards Two CRMs of similar composition (ERM- CC141 and BCR-320R) were measured together with the samples (IRMM).

Inorganic Core Capabilities Summary Table

CCQM Study: ✓ CCQM-K127

Institute(s): ANSTO, JSI

Method: INAA

Analyte(s): As, Cd, Fe, Mn (ANSTO, JSI)

Instructions:

Capabilities/Challenges	Not tested	Tested	Specific challenges encountered
Sample preparation Procedures used to prepare samples for irradiation; determination of the mass basis (e.g., determination of dry mass basis); procedures to minimize sample loss during preparation; procedures to minimize contamination with the elements of interest (highest difficulty for determination of low levels of elements that are ubiquitous in the sample preparation environment).		ANSTO (As, Cd, Fe, Mn) JSI	An aliquot varied from 0.20 to 0.25 g was sealed into a pure polyethylene ampoule (inside diameter 8 mm and 4 mm in height) (JSI).
Standards preparation Procedures used to prepare element standards or other comparators used for standardization. (e.g., low difficulty for use of pure elements or compounds; higher difficulty for procedures involving dissolution and dilution, or dilution with solid matrices.)	ANSTO (As, Fe, Cd)	ANSTO (Mn) JSI	k_0 -NAA was used in all cases, using Au as the standard. For As, Fe and Cd, the Au standard was IRMM-530RC AI-0.1 % Au wire and in the case of Mn NIST SRM 3121 gold standard solution was used to prepare a standard (ANSTO). IRMM-530R AI-0.1 % Au alloy in form of foil with thickness of 0.1 mm was used. Discs of about 7 mm diameter were prepared (JSI).
General applications Procedures associated with specific method of NAA and the evaluation of the associated uncertainties for comparator NAA, k ₀ NAA, or other method specific parameters not described below.		ANSTO (As, Cd, Fe, Mn) JSI	The measurements were undertaken in well-thermalized pneumatic facilities in the 20 MW OPAL research reactor. The method of k_0 -NAA was used (ANSTO). A sample and standard Al-0.1 % Au were stacked together, fixed in the polyethylene vial in sandwich

Capabilities/Challenges	Not tested	Tested	Specific challenges encountered
			form and irradiated in the 250 kW TRIGA Mark II reactor. Characterization of irradiation channel in the carousel facility (CF) of TRIGA reactor and absolute calibration of the HPGe detector are needed. Optimization and validation of the ko-INAA with different matrix certified reference materials are necessary. Concentration levels in non- contaminated soil for As, Fe and Mn have to be suitable for INAA, but not for Cd. Concentration levels in contaminated soil for As, Cd and Fe have to be suitable for INAA (JSI).
Determination of peak areas (complex spectra/small peaks) Procedures used to determine peak areas. (e.g., high difficulty for small peak areas on complex backgrounds or determination of areas for multiple unresolved peaks.)	ANSTO (As, Cd, Fe, Mn)	JSI	For peak area evaluation, the HyperLab 2002 program was used (JSI).
Correction for spectral interferences Procedures used to determine peak areas from interfering nuclides and subtraction of the appropriate number of counts from the peak of interest. Level of difficulty increases with the number of corrections needed and the magnitude of the corrections relative to the total peak area.	ANSTO (As, Cd, Fe, Mn)	JSI	No difficulties in net peak areas determination were encountered for ⁷⁶ As at 559.1 keV, for Cd/ ^{115m} In at 336.2 keV, for ⁵⁹ Fe-at 1099.3 and 1291.6 keV and for ⁵⁶ Mn at 846.8 keV (JSI).
Correction of fast neutron and fission interferences Procedures used to determine the contributions from fast neutron reactions or fission of U to the peak area of interest. The level of difficulty is related to the magnitude of the corrections needed.	ANSTO (As, Cd, Fe, Mn)	JSI	For studied radionuclides (⁷⁶ As, Cd/ ^{115m} In, ⁵⁹ Fe and ⁵⁶ Mn) the threshold reactions are negligible (JSI).
Corrections for sample and standard geometry differences Procedures used to determine correction factors for differences in sample and standard irradiation and counting geometries. These may include, e.g., use of flux monitors to determine irradiation geometry correction factors, and calculated correction factors based on measured thicknesses and sample-to-detector distances. Level of difficulty increases with the magnitude of the correction.		ANSTO (As, Cd, Fe, Mn) JSI	Corrections for geometry differences between sample and standard were calculated in proprietary Kayzero for Windows software (ANSTO). Differences in sample/standard geometry are taken into account and they are calculated by Kayzero for Windows (KayWin®) software, which was used for effective solid angle calculations and elemental concentration calculations (JSI).
for high count rates Procedures used to correct for losses in the analyzer due to high count rates;	Fe, Mn)	121	weasurements were carried out at such distances that the dead time was kept below 10 % with negligible random coincidences.

Capabilities/Challenges	Not tested	Tested	Specific challenges
			encountered
e.g., set up and validation of loss-free counting hardware, use of mathematical corrections for pulse pileup as a function of analyzer dead time, etc. Level of difficulty increases with the magnitude of the correction.			Multichannel analyzer DSPECPLUSTM in ZDT mode and MULTIPORT II multichannel analyzer were used (JSI).
Corrections for neutron absorption or scattering differences between samples and standards Procedures used to correct for differences between neutron exposure of samples and standards associated with differences in the absorbing and scattering power; e.g., corrections derived from measurements of different amounts of materials or thicknesses of materials, or calculations based on cross-section values to correct for neutron attenuation. Level of difficulty increases with the magnitude of the correction.	ANSTO (As, Cd, Fe, Mn)	JSI	Standard Al-0.1 % Au (nuclide 198 Au (T _{1/2} =2.695 d) at gamma line of 411.8 keV) was used for axial flux gradient corrections in the sample. Radial flux gradient is negligible due to similar diameter of sample and standard. Thermal and epithermal self-shielding factors are equal to 1 (JSI).
Corrections for differences in neutron exposure of samples and standards For some NAA applications, samples and standards are irradiated individually and corrections are needed for any differences in neutron exposures. Corrections may be based on, e.g., results from flux monitors or estimates based on knowledge of the facility.	ANSTO (As, Cd, Fe, Mn)	JSI	The samples and standards were irradiated together (see above) (JSI).
Corrections for gamma-ray attenuation Procedures used to correct for differences in gamma-ray attenuation between samples and standards; typically relevant only for high-z sample or standard matrices and where samples and standards differ. Level of difficulty increases with the magnitude of the correction.	ANSTO (As, Cd, Fe, Mn)	JSI	Corrections for gamma-ray attenuations in sample/standard were calculated by Kayzero for Windows (KayWin®) software (JSI).

Inorganic Core Capabilities Summary Table

CCQM Study: ✓ CCQM-K127 □ CCQM-P62

Institute(s): INACAL, JSI, INM

Method: ETA-AAS (or GF-AAS), FAAS

Analyte(s): ETA-AAS (or GF-AAS): As (INACAL), Cd (INACAL, JSI), Pb (INACAL) FAAS: As (INM), Cd (INACAL, INM), Fe (INACAL, INM), Mn (INACAL, INM), Pb (INM)

Instructions:

Capabilities/Challenges	Not tested	Tested	Specific challenges
			encountered
Contamination control and correction		JSI (Cd)	The blank values were under the
All techniques and procedures employed			limits of detection (JSI).
to reduce potential contamination of			
samples as well as blank correction		INM (As, Cd,	For each digestion, a separate
procedures. The level of difficulty is		PD, Fe, Mn)	blank sample was included. The
greatest for analytes that are			blank samples containing all
present at you low concentrations in the			acids, without the sample itself,
sample			procedure stages and measured
Sample.			(INM)
Digestion/dissolution of organic matrices	JSI (Cd)		
All techniques and procedures used to			
bring a sample that is primarily organic in	INM (As. Cd.		
nature into solution suitable for liquid	Pb. Fe. Mn)		
sample introduction to the ETA-AAS.			
Digestion/dissolution of inorganic	JSI (Cd)	INACAL (As,	Optimization of acids combination
matrices		Cd, Pb)	for total digestion of the sample
All techniques and procedures used to			(INACAL).
bring a sample that is primarily inorganic		INM	
in nature into solution suitable for liquid		(As, Cd, Pb,	
sample introduction to the ETA-AAS.		Fe, Mn)	
Volatile element containment	JSI (Cd)		
All techniques and procedures used to			Different digestion conditions
prevent the loss of potentially volatile	INM		selected for As (digestion in two
analyte elements during sample treatment	(As, Cd, Pb,		consecutive days). Closed vessels
and storage.	Fe, Mn)		(INM).
Pre-concentration	JSI (Cd)		
lechniques and procedures used to			
increase the concentration of the analyte			

Capabilities/Challenges	Not tested	Tested	Specific challenges encountered
introduced to the ETA-AAS. Includes evaporation, ion-exchange, extraction, precipitation procedures, but not vapor generation procedures.	INM (As, Cd, Pb, Fe, Mn)		
Matrix separation Techniques and procedures used to isolate the analyte(s) from the sample matrix to avoid or reduce interferences caused by the matrix. Includes ion- exchange, extraction, precipitation procedures, but not vapor generation procedures.	JSI (Cd) INM (As, Cd, Pb, Fe, Mn)		
Hydride preconcentration/matrix separation of volatile species. <i>Coupling of a hydride system to the ETA-</i> <i>AAS and optimization of conditions.</i>	JSI (Cd)	INM (As, Cd, Pb, Fe, Mn)	
Calibration of analyte concentration The preparation of calibration standards and the strategy for instrument		INACAL (As, Cd, Pb)	Use of standard addition calibration (INACAL).
calibration. Includes external calibration and standard additions procedures. Also use of matrix-matched standards to minimize effect of interferences.		JSI (Cd) INM (As, Cd, Pb, Fe, Mn)	External calibration (JSI). Use of standard addition calibration (INACAL). External calibration; bracketing method. ERM CC141 used for validation of Mn (INM).
Signal detection The detection and recording of the absorption signals of analytes. The degree of difficulty increases for analytes present at low concentrations, of low atomic absorption coefficient. Requires selection of operating conditions such as light source, absorption line, Zeeman background correction conditions. Includes selection of signal processing conditions (peak area or height).	JSI (Cd)	INM (As, Cd, Pb, Fe, Mn)	Instrument parameters (spectrometer, flow, burner high etc.) optimization; Reliable analytical signals for Fe, Mn, Cd and Pb (contaminated soil) ERM CC141 used for validation of Mn. High characteristic concentration for As (contaminated soil) (INM).
Memory effect Any techniques used to avoid, remove or reduce the carry-over of analyte between consecutively measured standards and/or samples.	JSI (Cd)	INACAL (As, Cd, Pb) INACAL (Cd, Fe, Mn) INM (As, Cd, Pb, Fe, Mn)	Use of blank samples between standards and samples (INACAL). Use of blank samples between standards and samples (INACAL). Washing procedures: before and after each measurement, 2 % HNO ₃ (INM).
Optimization of the furnace temperature program Optimization of temperature and duration of steps for sample drying, pyrolysis to remove (residual) organics, and atomization. Furnace temperature program to minimize analyte loss in the drying/pyrolysis steps, while maximizing analyte vaporization in the atomization step.	JSI (Cd) INM (As, Cd, Pb, Fe, Mn)	INACAL (As, Cd, Pb)	Optimization of temperature and duration of steps in the furnace temperature program (INACAL).

Capabilities/Challenges	Not tested	Tested	Specific challenges
- apa			encountered
Correction or removal of matrix effects or	JSI (Cd)	INACAL (As,	Selection of matrix modifier to
interferences		Cd, Pb)	adjust volatility of analyte and
Chemical or instrumental procedures			matrix (INACAL).
used to avoid or correct for spectral and			
non-spectral interferences. Includes	INM (As, Cd,		
effects of differences in viscosity and	Pb, Fe, Mn)		
chemical equilibrium states of analyte			
between the standard and sample.			
Selection of matrix modifier to adjust			
volatility of analyte and/or matrix to			
eliminate these effects is also included.			
Addition of reactive gases (eg oxygen) to			
the carrier gas to improve matrix			
separation. Also included is Zeeman or			
other background correction techniques			
to remove interference due to absorption			
and scattering from coexisting			
molecules/atoms in the sample.			

Note: red fonts belong to FAAS, black fonts belong to ETA-AAS (or GF-AAS)

Annex II:

CALL FOR PARTICIPANTS

Key Comparisons CCQM-K127 and Pilot Study CCQM-P162 Contaminant and other elements in soil

January, 2015

From: The Co-ordinating Laboratories: CENAM and JSI

To: Members of the CCQM Inorganic Analysis Working Group (IAWG) Other expert institutes

(Answer is desired even if the institute or laboratory does not wish to participate)

Dear IAWG Member,

This letter is an invitation to participate in key comparison CCQM-K127 and/or in pilot study CCQM-P162, for the determination of mass fraction of total element contents in soil samples.

This is a follow-up comparison in the category 13; where three key comparisons have been carried out during the years 2000 (CCQM-K13), 2003 (CCQM-K28) and 2004 (CCQM-K44). Since it is important to update the capabilities of NMIs in this category, CENAM and JSI propose a key comparison in this category and run a pilot study in parallel. Currently 13 NMI has been claimed in Category 13: 29 CMCs soil and 96 CMCs of sediments.

The candidate soils samples to be used in both CCQM-K127 and CCQM-P162 represent a non-contaminated soil with low concentrations of elements, and a contaminated soil with much higher concentration of selected elements. This broadens the scope and a degree of complexity of earlier measurements in this field.

Organizations which are national metrological institutes (NMI), or appropriate designated institutes (DI) of the CIPM MRA system, are invited to participate in the key comparison or the pilot study.

The results of the key comparison will be presented in the form of a report to the CCQM, available to participants and to members of the IAWG. The report will identify the results with the names of the participating institutes. Preliminary (A) and final (B) drafts of the report will be circulated to participants for comments and corrections. The approved report will be submitted to the BIPM's Key Comparison Database (KCDB) and the results will be publicly available. A similar report will be prepared for the pilot study, for participants and members of the IAWG.

A short description of the study is given below. A detailed study protocol will be sent to registered participants later.

Background

The main sources of elements as contaminants/pollutants in soils are mining and smelting activities, fossil fuel combustion, agricultural practices, industrial activities and waste disposal. Resulting contaminated/polluted sites are of great concern and represent serious environmental, health and economic problems. Characterization and identification of contaminated land is the first step in risk assessment and remediation activities. It is well known that soil is very complex matrix with huge variability locally and worldwide. Consequently, despite the available reference materials (RM) certified for trace and major elements in soils, there is a lack of concentration and matrix-matched soils RM at testing and calibration levels.

Non-contaminated soils contain trace and major elements at levels representing geochemical background of the region. In mining sites, toxic elements such As, Cd, Pb, Cr and Zn form many ore minerals, including traces of Au and Ag. During mining and ore processing these elements are emitted to environment causing anthropogenically elevated levels in soils. Once those are in the soil, the toxic elements present in ore mine fragments disperse mechanically by wind or water or leach from tailing dams and undergo oxidation and other weathering reactions leading to metal ion distribution within the soil system in more mobile forms and also potentially more bioavailable than the original ones.

Analytical laboratories should, therefore, demonstrate their measurement capabilities of trace and major elements in a wide concentration ranges, representing background/reference sites as well as highly contaminated soils by their available analytical method; so this facilitate to investigate the core capabilities of participants to measure the mass fraction of tested elements in soil and therefore to claim their Calibration and Measurement Capabilities.

Sample materials

<u>Non-contaminated soil</u> sample was prepared by JSI. Soil was collected from a natural grassland and is characterized as eutric cambisol on gravel and sand. The sample was prepared according to ISO 11464: 2006, Soil quality - Pretreatment of samples for physic-chemical analysis. A fraction bellow 250 μ m was finally homogenized for 60 h in ball drum. After homogeneity testing for 11 elements, the soils were bottled into 40 mL amber vials containing 20 g of soil each. Samples were sterilized by Co-60 irradiation at a dose between 18 – 24 kGy.

<u>Contaminated soil</u> sample was prepared by CENAM. The contaminated sandy soil of rhyolitic origin was characterized for total content of 5 metals proposed. The soil batch was homogenized using a homogenizer drum with three dimensions for 3 hours, and also in a sampler splitter of 10 positions, and then packaged with 20 g of soil with a particle size in the range between (75 - 90) μ m, contained in a amber borosilicate glass bottle and packed in a vacuum double bag, the first was striated polyethylene bag and the second (outer) in a polyethylene terephthalate bag (Maylar ®). For stability purposes, the batch was irradiated with Co-60 at a dose between (17 - 22) kGy for microbiological control and bottled. The homogeneity of the candidate material it is fully investigated before it is distributed.

Target measurands

Four target elements are selected in the <u>contaminated soil sample</u> and **five target elements** in <u>non-contaminated soil sample</u> for the key comparison and pilot study. These elements are Arsenic, Cadmium, Iron, Lead and Manganese for non-contaminated soil; Arsenic, Cadmium, Iron and Lead for <u>contaminated soil</u>. Optional choice is allowed only for the pilot study. This comparison would allow participants to better demonstrate and shine their capabilities on the measurement of various elements in category 13.

Element	Non-contaminated	Contaminated
As (mg/kg)	5 - 20	40 - 100
Cd (mg/kg)	0.1 - 1	100 - 600
Fe (g/kg)	20 - 50	10 - 30
Pb (mg/kg)	20 - 70	50 - 300
Mn (mg/kg)	500 - 1500	-

Mass fractions ranges of the total content of elements in soil samples

Method of analysis

The participants are encouraged to use any method of their choice for the determination of <u>total</u> content of elements in soil samples. Results of analysis for the matrix sample should be dry mass corrected. The procedure for determination of moisture content will be provided. It is recommended that the preparation and dilution of solutions be carried out by weighing.

If participants are registered in the key comparison, it is necessary to provide all the necessary information about their methods in order to include it in the key comparison report; also, it must provide the core capability tables, which form part of the key comparison report.

Time schedule

Call for participation Deadline for registration of participation: Distribution of samples: Deadline for delivery of results: First discussion on results February, 2015 February 28, 2015 March, 2015 August 31, 2015 October, 2015

Registration

Please register using attached form. Please specify if you wish to participate in the key comparison K127 or pilot study P162. Please return the registration form by e-mail no later than February 28th, 2015 to:

Contact Persons:

María-Rocío Arvizu-Torres E-Mail: <u>marvizu@cenam.mx</u> Tel +52-442-2110500 Ext 3902 J. Velina Lara Manzano <u>vlara@cenam.mx</u> Tel +52-442-2110564 Centro Nacional de Metrología El Marques, Querétaro. México, 76246

We look forward to your participation in this comparison

Yours sincerely,

María-del-Rocío Arvizu-Torres CENAM

Prof. Dr. Milena Horvat JSI

Annex III:

REGISTRATION FORM Key Comparisons CCQM-K127 and Pilot Study CCQM-P162 Contaminant and other elements in soil

Name of Institute:			
NMI / DI:	National Metrolog	y Institute	Designated Institute
Address:			
Country:			
Contact person:			
	Title	Given nar	me Surname
E-mail:			
Tel.:			
Date :		Signature:	

I would like to register for CCQM-K127	Yes	No
(delete as appropriate):		

I would like to register for **CCQM-P162** (indicate the sample and the elements for which you are interested to measure by inserting **Yes** or **No** under the heading of the appropriate sample).

Matrix / Measurand	Contaminated soil CCQM-P162 (Yes/No)	Non- contaminated soil CCQM-P162 (Yes/No)	Analytical method
Arsenic			
Cadmium			
Iron			
Lead			
Manganese			

Please send completed registration form by e-mail no later than February 28th, 2015 to:

María-del-Rocío Arvizu-Torres

Centro Nacional de Metrología El Marques, Querétaro. México, 76246 Tel +52-442-2110500 Ext 3902 E-Mail: marvizu@cenam.mx

Annex IV:

Technical Protocol

March, 2015

1. Introduction

Non-contaminated soils contain trace and major elements at levels representing geochemical background of the region. The main sources of elements as contaminants/pollutants in soils are mining and smelting activities, fossil fuel combustion, agricultural practices. industrial activities disposal. and waste Resulting contaminated/polluted sites are of great concern and represent serious environmental, health and economic problems. Characterization and identification of contaminated land is the first step in risk assessment and remediation activities. It is well known that soil is very complex matrix with huge variability locally and worldwide. Consequently, despite the available reference materials (RM) certified for trace and major elements in soils, there is a lack of concentration and matrix-matched soils RM at testing and calibration levels.

According to the IAWG's five year plan, it is recommended to have a key comparison under the measurement service category of soils and sediments for the year 2015. Currently 13 NMI has been claimed in Category 13: 29 CMCs soil and 96 CMCs of sediments. In this regards this is a follow-up comparison in the category 13; where three key comparisons have been carried out during the years 2000 (CCQM-K13), 2003 (CCQM-K28) and 2004 (CCQM-K44).

Since it is important to update the capabilities of NMIs in this category, at the CCQM-IAWG meeting held in April 2014, CENAM and JSI proposes a key comparison in this category and run a pilot study in parallel. The proposed study was agreed by IAWG members, where two soils samples will be used in both CCQM-K127 and CCQM-P162 and represent a noncontaminated soil with low concentrations of elements (Arsenic, Cadmium, Iron, Lead and Manganese), and a contaminated soil with much higher concentration of selected elements (Arsenic, Cadmium, Iron and Lead). This broadens the scope and a degree of complexity of earlier measurements in this field. National metrology institutes (NMIs)/designate institutes (DIs) should, therefore, demonstrate their measurement capabilities of trace and major elements in a wide concentration ranges, representing background/reference sites as well as highly contaminated soils by their available analytical method. This facilitate to investigate the core capabilities of participants to measure the mass fraction of tested elements in soil and therefore to claim their Calibration and Measurement Capabilities as listed in Appendix C of the Key Comparison Database (KCDB) under the Mutual Recognition Arrangement of the International Committee for Weights and Measures (CIPM MRA). Participants are requested to complete the Inorganic Core Capabilities Tables as a means of providing evidence for their CMC claims.

2. Sample materials

<u>Non-contaminated soil</u> sample was prepared by JSI. Soil was collected from a natural grassland and is characterized as eutric cambisol on gravel and sand. The sample was prepared according to ISO 11464: 2006, Soil quality - Pretreatment of samples for physic-chemical analysis. A fraction bellow 250 μ m was finally homogenized for 60 h in ball drum. After homogeneity testing for 5 elements, the soils were bottled into 40 mL amber vials containing 20 g of soil each. Samples were sterilized by Co-60 irradiation at a dose between (18 – 24) kGy. The samples are stored at room temperature (20 ± 2) °C before shipment. Homogeneity study (with sample size of 0.25 g) of the testing materials had been performed and the results were found to be satisfactory. Stability study of the prepared samples is conducted and will continue further to cover the entire exercise.

<u>Contaminated soil</u> sample was prepared by CENAM. The contaminated sandy soil of rhyolitic origin was characterized for total content of 5 metals proposed. The soil batch was homogenized using a homogenizer drum with three dimensions for 3 hours, and also in a sampler splitter of 10 positions, and then packaged with 60 g of soil with a particle size in the range between $(75 - 90) \mu m$, contained in a amber borosilicate glass bottle and packed in a vacuum double bag, the first was striated polyethylene bag and the second (outer) in a polyethylene terephthalate bag (Maylar ®). For stability purposes, the batch was irradiated with Co-60 at a dose between (17 - 22) kGy for microbiological control and bottled. The homogeneity of the candidate material it is fully investigated before it is distributed.

study (with sample size of 0.5 g) of the testing materials had been performed and the results were found to be satisfactory. Stability study of the prepared samples has been conducted and would be continued further to cover the entire exercise.

3. Target measurands

Four target elements are selected in the <u>contaminated soil sample</u> and **five target elements** in <u>non-contaminated soil sample</u> for the key comparison and pilot study. These elements are Arsenic, Cadmium, Iron, Lead and Manganese for non-contaminated soil; Arsenic, Cadmium, Iron and Lead for <u>contaminated soil</u>. Optional choice is allowed only for the pilot study. This comparison would allow participants to better demonstrate and shine their capabilities on the measurement of various elements in category 13.

Mass fractions ranges of the total content of elements in soil samples

Element	Non-contaminated	Contaminated
As (µg/g)	5 - 20	40 - 100
Cd (µg/g)	0.1 - 1	100 - 600
Fe (mg/g)	20 - 50	10 - 30
Pb (µg/g)	20 - 70	50 - 300
Mn (µg/g)	500 - 1500	-

4. Method of analysis

The participants are encouraged to use any method of their choice for the determination <u>of</u> total content of elements in soil samples.

The sample should be mixed thoroughly before processing and the analysis should be conducted with a recommended sample size of at least 0.5 g for contaminated soil and 0.25 g for non-contaminated soil. Participants are requested to perform independent measurements on at least five separate portions of the sample and to determine the total mass fractions of the analytes of interest. Measurement results of elements in the soil samples should be dry mass corrected. It is recommended that the preparation and dilution of solutions be carried out by weighing.

Determination of moisture

A minimum of three separate portions (recommended size to be about 1 g each). The material should be dried in a ventilated oven at a temperature of (105 ± 2) °C. Dry the soil samples for minimum 2 hours. Then weight and repeat drying until constant mass is attained (as recommendation: successive weights should not different more that 1 mg). The loss of mass corresponds to the correction that should be applied (dry mass correction). It is advisable to perform this procedure at the same time when weighing the soil samples for the measurements of the measurands.

Note: valid for contaminated and non-contaminated soil.

5. Reporting

The registered participants must provide all the necessary information about their methods in order to include it in the key comparison report; for the participants in the key comparison, it is mandatory to provide the core capability tables, which form part of the key comparison report.

- All measured values for each subsample and the mean value of at least five independent separate portions of sample (subsamples) and its associated measurement uncertainty shall be reported on a dry mass basis. Any participant that chooses to use multiple methods can decide only one composite result (e.g., an average value from different methods) and also the individual results from different methods as the reporting value(s) for each measurand;
- > Report the mass fractions of analytes in $\mu g/g$ for each sample, except for Fe in mg/g;
- Participants shall provide (i) description of analytical methods (including sample digestion/dissolution methods, calibration methods and analytical instruments used) and (ii) details of the uncertainty estimation (including complete specification of the measurement equations and description of all uncertainty sources);

- Sources, purity and traceability of reference materials used for calibration purpose shall be provided; and
- Both the Report Form and the Inorganic Core Capabilities Tables should be submitted to the contact:

Maria-Rocio Arvizu-Torres E-Mail: <u>marvizu@cenam.mx</u> Tel +52-442-2110500 Ext 3902

Please choose and download appropriate Inorganic Core Capabilities Tables from the IAWG webpage:

http://www.bipm.org/wg/CCQM/IAWG/Restricted/welcome.jsp

Username: IAWG Password: INORG99 Select the link for Participant_Tables.

6. Programme schedule

Call for participationFebruDeadline for registration of participationFebruDistribution of samples:MarcDeadline for delivery of results:AuguFirst discussion on results at the CCQM-IAWG MeetingOctob

February, 2015 February 28, 2015 March, 2015 August 31, 2015 October, 2015

The results of the key comparison will be presented in the form of a report to the CCQM, available to participants and to members of the IAWG. The report will identify the results with the names of the participating institutes. Preliminary (A) and final (B) drafts of the report will be circulated to participants for comments and corrections. The approved report will be submitted to the BIPM's Key Comparison Database (KCDB) and the results will be publicly available. A similar report will be prepared for the pilot study, for participants and members of the IAWG.

7. Coordinating laboratories

The CCQM-K127 and CCQM-P162 are coordinated by CENAM (Maria-del-Rocio Arvizu-Torres and J. Velina Lara Manzano) and JSI (Milena Horvat).

Annex V: Reporting Form

Key Comparison CCQM-K127 Contaminant and other elements in soil

Report Form

A. Participating Laboratory Information

Date :			
Name of Institute			
	National Metrology Institute	Designated Institute	9
NMI / DI			
Technical Contact (name)		I	
	Title	Given name	Surname
e-mail:			
The number of unit used	Non-contaminated soil:	Contaminated soil	:

(Please email the completed report form to marvizu@cenam.mx on or before 31 August 2015)

Analysts:

B. Comparison Data for Non-contaminated Soil

Analyte	For each subsample mass fraction (on dry mass basis)	Mean mass fraction (on dry mass basis)	Combined standard uncertainty [<i>u</i> (<i>y</i>) _c]	Dry mass correction factor (g/g)
Total Arsenic (μg/g)				
Total Cadmium (μg/g)				
Total Iron (mg/g)				
Total Lead (µg/g)				
Total Manganese (µg/g)				

C. Comparison Data for Contaminated Soil

Analyte	For each subsample mass fraction (on dry mass basis)	Mean mass fraction (on dry mass basis)	Combined standard uncertainty [<i>u</i> (<i>y</i>) _c]	Dry mass correction factor (g/g)
Total Arsenic (µg/g)				
Total Cadmium (μg/g)				
Total Iron (mg/g)				
Total Lead (μg/g)				

D. Information on Analytical Method for Non-contaminated Soil

Analyte	Sample preparation/Digestion procedure	Measurement technique	Calibration method	Reference materials used
As				
Cd				
Fe				
Pb				
Mn				

E. Information on Analytical Method for Contaminated Soil

Analyte	Sample preparation/Digestion procedure	Measurement technique	Calibration method	Reference materials used
As				
Cd				
Fe				
Pb				

F. Uncertainty Estimation

Please describe the approach for the uncertainty estimation and give the formula used for the calculation of the expanded uncertainty.

Please include the coverage factor used in each case for each analyte

G) Please list the sources of uncertainties included in the combined standard uncertainty estimation and indicate by putting "X" in the appropriate box, which uncertainty components were considered for each analyte.

For Non-Contaminated Soil

Analyte Uncertainty component	Arsenic	Cadmium	Iron	Lead	Manganese
	L				

For Contaminated Soil

Analyte Uncertainty component	Arsenic	Cadmium	Iron	Lead