Hydrogeochemical impact on the karst watershed of the Krka River in Slovenia interpreted by U and Th isotopic composition

Leja Rovan^{1,2}, Sonja Lojen^{1,2}, Tea Zuliani^{1,2}, Barbara Horvat³, Marko Štrok^{1,2}

¹Internatiolnal Postgraduate School Jožef Stefan, Ljubljana, Slovenia
 ²Jožef Stefan Institute, Department of Environmental Sciences, Ljubljana, Slovenia
 ³Slovenian National Building and Civil Engineering Institute, Ljubljana, Slovenia

MEDNARODNA PODIPLOMSKA ŠOLA JOŽEFA STEFANA

Use of U & Th isotopes as a complimentary tool to traditional geochemical parameters and stable isotopes.

Check possible U & Th fractionations in environment with predominantly carbonate lithology, → with the help of MC-ICP-MS.

Uranium (U) & Thorium (Th)

- Natural occurring radionuclides
- Oxidation states: U(VI) (soluble)
 U(IV) (insoluble)
 Th(IV) (insoluble)
- U & Th isotopes:

Characteristic	²³⁸ U	²³⁵ U	²³⁴ U	²³² Th	²³⁰ Th
Half-life (years)	4.47 x 10 ⁹	7.04 x 10 ⁸	2.45 x 10 ⁵	1.41 x 10 ¹⁰	7.54 x 10 ⁴
Natural abundance (%)	99.27	0.72	0.0054	99.82	0.02
Oxidation state	+4, +6	+4, +6	+4, +6	+4	+4

• Radioactive \rightarrow unstable and decaying...

Radioactive decay chain series:

Heavy, unstable eleme (eg. Uranium 238)

U & Th isotope fractionations in nature

- ²³⁴U/²³⁸U:
- \rightarrow Short-term chronometer & tracer of U mobility.

>10% from secular equilibrium* Alpha recoil process

- ²³⁸U/²³⁵U:
 - \rightarrow Studying redox variation in the past.

~0.03% from secular equilibrium

* Solubility in different redox state

* Nuclear field shift effect

²³⁰Th/²³²Th

 \rightarrow Geochemical tracer & indicator of carbonate detrital contaminations.

A conceptual model of oxidation-based ²³⁴U fractionation.

Study area: Krka River in Slovenia

Map of the examined area and locations of the sampling sites:

- Mesozoic Dinaric Carbonate Platform
- River charged by:
 - Groundwater in the headwater catchment area
 - Tributaries
 - Diffused groundwater input throughout the course of the river

- Spring
- Tributary
- Mainstream

W: Water B: Bedrock

T: Tufa

Sito	Dominant Bedrock	Distance from the spring [km]	
SILE	lithology		
S1 Krka spring; W, B	Dolomite	0	
S2 Poltarica (second, minor spring); W, B	Dolomite	0.50	
T1 Višnjica (tributary); W, B	Alluvial sediment	0.90	
T2 Globočec (tributary); W, B	Limestone	8.50	
R1 Zagradec; W, T	Limestone	7.40	
R2 Bevc; W, T	Limestone	7.77	
R3 Štupnk; W, T	Limestone	8.40	
R4 Zagraško smrečje; W, T	Limestone	9.04	
R5 Okluka; W, T	Limestone	9.92	
R6 Hinavček; W, T	Limestone	10.27	
R7 Drašča vas 1; W, T	Limestone	10.53	
R8 Drašča vas 2; W, T	Limestone	10.79	
R9 Jožman; W, T	Limestone	11.18	
R10 Rivc; W, T	Limestone	11.42	
R11 Poljane; W, T	Dolomite & Limestone	12.86	
R12 Dimc; W, T	Dolomite & Limestone	15.24	
R13 Kovačnica; W, T	Dolomite & Limestone	16.22	
R14 Prapreče; W, T	Dolomite & Limestone	16.52	
R15 Žužemberk; W, T	Dolomite & Limestone	17.14	
R16 Dvor; W, T	Dolomite & Limestone	21.20	

Methodology: Analytical procedure

River water, tufa, Bedrock.

ICP-QQQ-MS

MC-ICP-MS

U and Th concentrations δ^{238} U value ²³⁴U/²³⁸U activity ratio ²³⁰Th/²³²Th activity ratio

Results: U isotopic composition in water samples

Geological map with lithological units.

Results: U isotopic composition in carbonate and water samples

Sampling point

Elemental mineral composition of tufa and carbonate bedrock samples from the XRF.

Results: Th isotopic composition in carbonate samples

(%)

Component

Sampling point

Elemental mineral composition of tufa and carbonate bedrock samples from the XRF.

Conclusions

- U isotopic composition shows potential as a tracer:
 - lithological characteristics of the bedrock;
 - mixing waters from different origins;
 - to track seasonal variations along the flow of karstic waters;
 - indicator for the storage of CO₂ as authigenic carbonate in tufa and carbonate detrital contamination.
- Th isotopic ratio demonstrates as an indicator to:
 - differentiate between authigenic and detrital carbonate in tufa.

Data presented new evidence on the U and Th isotope disequilibrium in river water and its tufa appearance and brings broader knowledge on fluxes and their governing mechanisms within the local and global biogeochemical C cycle.

MEDNARODNA J PODIPLOMSKA ŠOLA IN JOŽEFA STEFANA P

Thank you for your attentions!

Contact:

<u>leja.rovan@ijs.si</u>

Acknowledgement:

This work is supported by:

Slovenian Research Agency Programme group P2-0075, Project J1-9179 Young Researcher's program