15th International Symposium on the Interactions Between Sediments and Water

University of Ljubljana

Are isotopes of Mg, Sr and U in fluvial sediments identifiers of authigenic carbonate?

S. Lojen, T. Zuliani, L. Rovan, M. Štrok, T. Kanduč, P. Vreča Jožef Stefan Institute, Ljubljana, Slovenia

Q. Jamil

Faculty of Chemistry and Chemical Technology, University of Ljubljana, Slovenia

Funded by Slovenian Research Agency (J1-9179, P1-0143, P2-0075)

Authigenic carbonate: "third major CO2 sink"

Schrag et al. 2013, doi.org/10.1126/science.1229578

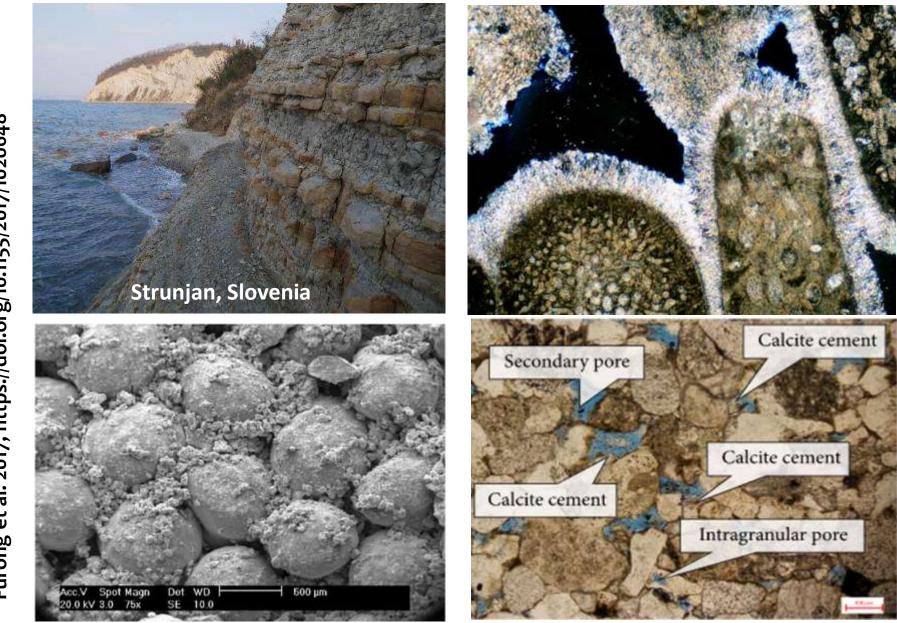

It comes in different forms...

Photo: S.D. Škapin, JSI

Zrmanja, Croatia

... but most of them you can't see

Furong et al. 2017, https://doi.org/10.1155/2017/1020648

What is the problem?

Identification of authigenic carbonate is...

 \rightarrow Relatively easy in siliciclastic sediments

- → Not so easy in limestone (Zhao et al. 2016, Nat Commun 7, 2016, 10885)
- → Complicated in terrigenous sediments at areas with dominant carbonate lithology

Why traditional isotopes (δ^{13} C, δ^{18} O) often fail?

 \rightarrow Mixing of different sources of C and O

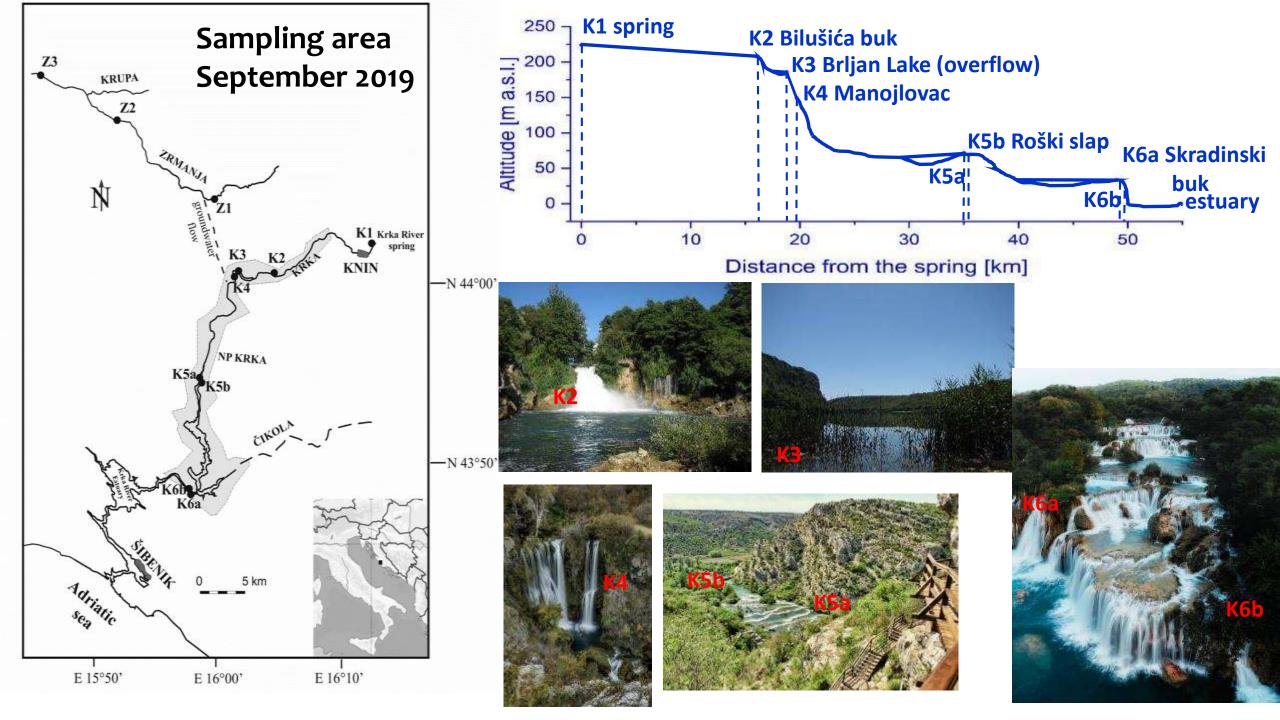
 \rightarrow Different formation pathways of CaCO₃

 \rightarrow "Vital" effects

→ Simultaneous, consexutive or cyclic early diagenetic processes that fractionate isotopes in different directions (e.g. CaCO3 precipitation and methanogenesis)

How non-traditional isotopes could help?

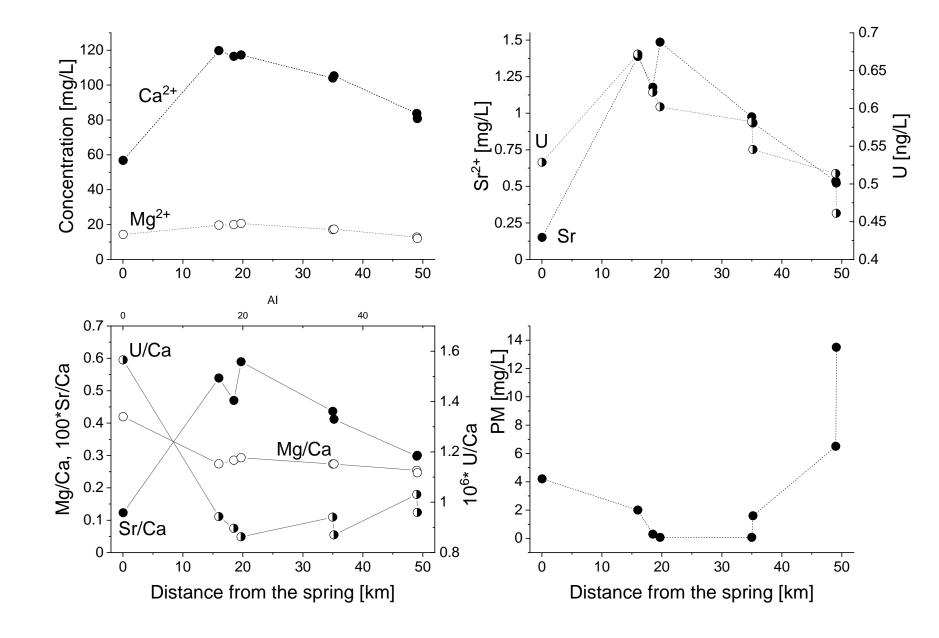
- \rightarrow ²³⁴U/²³⁸U activity ratio identifies "young" precipitating (ground)water of meteoric origin that was in contact with the aquifer as opposed to the seawater, where primary carbonate was formed
- $\rightarrow \delta^{88}$ Sr and δ^{26} Mg identify the source and recycling of Sr and Mg – typical isotopic fractionation between carbonate and the dissolved Sr²⁺ and Mg²⁺ in precipitating water

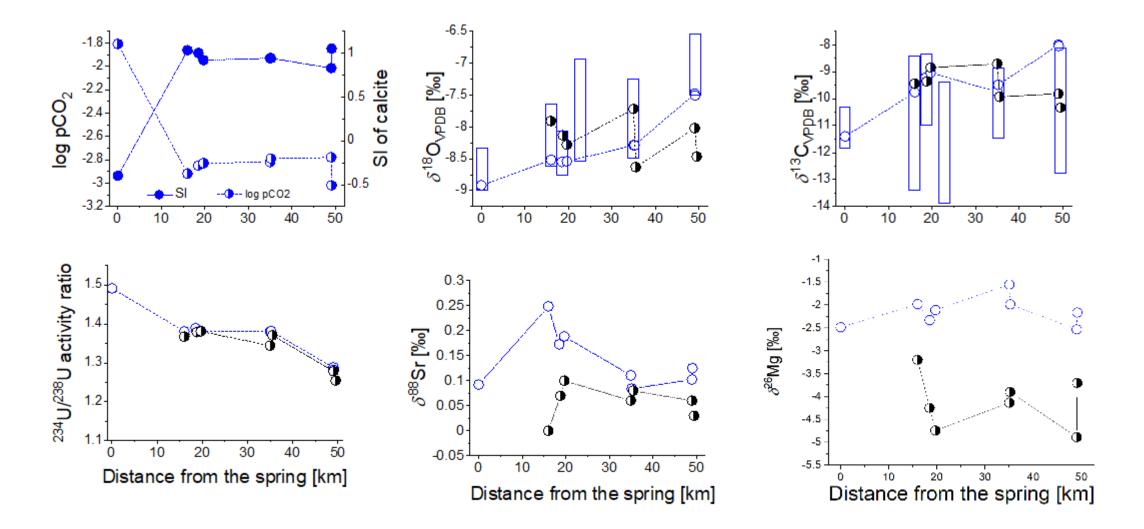

Others (atmospheric depositon, biota, plant debris etc.)

water

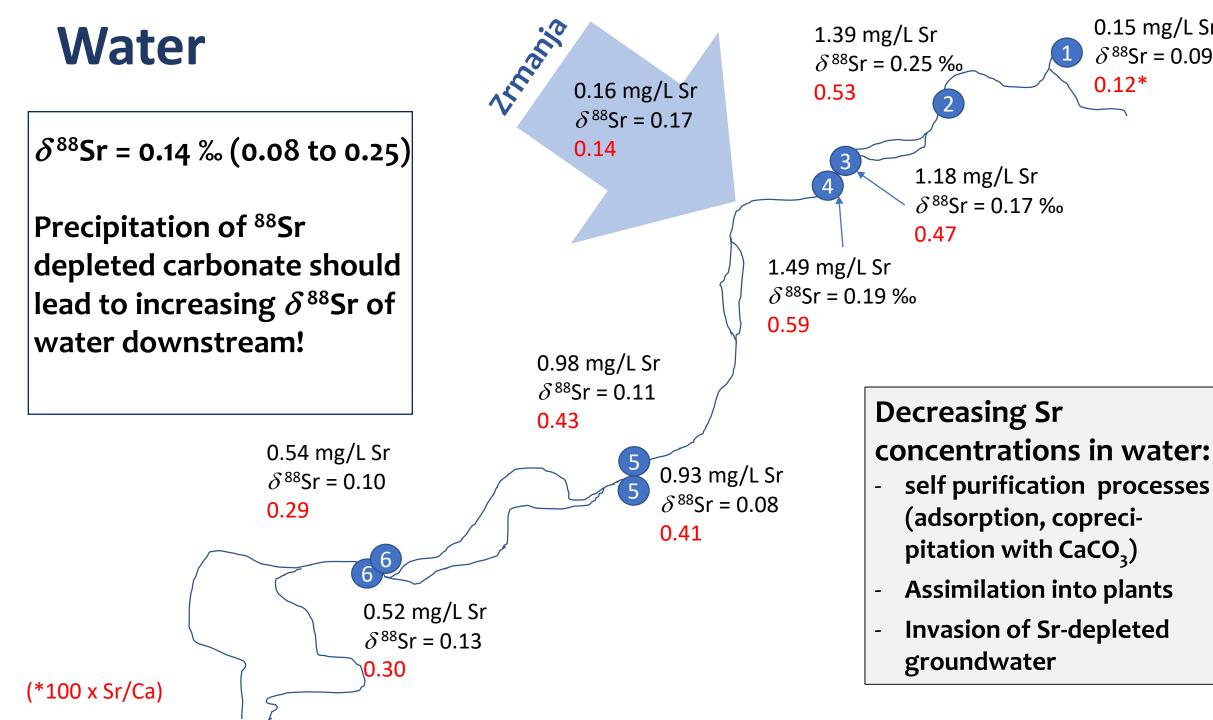
CaCO3 + detrital material

Challenge:


- How do U, Sr and Mg isotopes behave in a tufa precipitating stream
- What information can be obtained from ^{234/238}U activity ratios, δ²⁶Mg and δ⁸⁸Sr values – precipitation of carbonate or hydrology or both?
- What are contributions of detrital carbonate to the stream sediment (tufa)

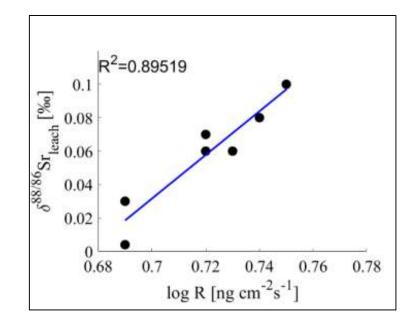


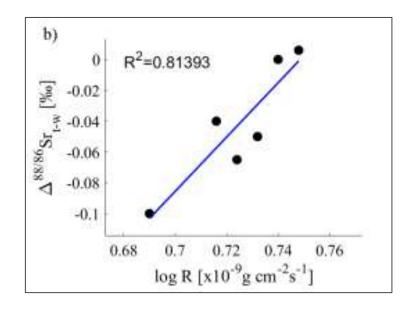
Analyses


- Water: T, pH, Eh, T, Ca²⁺, Mg²⁺, Sr²⁺, U, ^{234/238}U, δ^{88} Sr, δ^{26} Mg, δ^{18} O, δ^{13} C-DIC
- Bedrock, soil, tufa
 - Bulk CaO, MgO, SrO, SiO₂, Fe₂O₃, Al₂O₃, U, ^{234/238}U, δ^{88} Sr, δ^{26} Mg δ^{18} O, δ^{13} C
 - Leaching (NaAc + Hac at pH = 5): Ca, Mg, Sr, U, ^{234/238}U, δ^{88} Sr, δ^{26} Mg
 - XRF, XRD

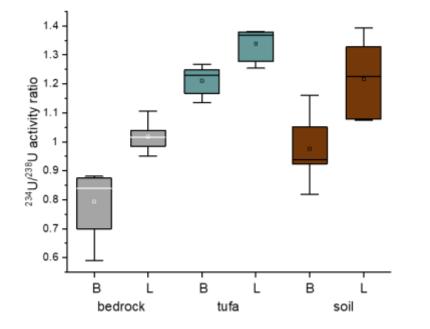
Water

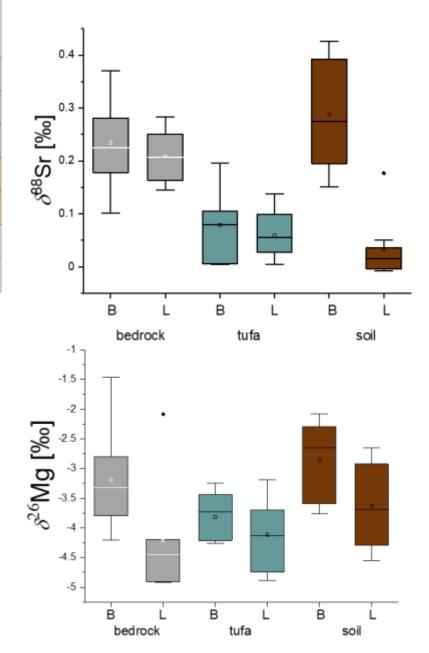
Blue symbols: water; black symbols: tufa, leachable fraction




0.15 mg/L Sr

0.12*


 δ^{88} Sr = 0.09 ‰


- Downstream increasing U/Ca trend is consistent with tufa precipitation, while the Mg/Ca and Sr/Ca ratios are insonsistent with tufa precipitation – most probably related to the hydrological situation
- 234/238U activity ratio of water and of authienic carbonate match along the entire stream flow
- δ ⁸⁸Sr values of leachable fraction of tufa are lower than those of dissolved Sr by 0.00 to 0.25 ‰, while the δ ²⁶Mg values leachable tufa fraction are lower by 1.22 to 2.63 ‰ comapred to dissolved Mg
- Sr partitioning and isotope fractionation depend upon carbonate precipitation rate and to a lesser extremt to the temperture, while the Mg partitioning depends on temperature, but seems to be unaffected by precipitation rate

	^{234/238} U [activity ratio]	δ^{88} Sr [‰]	δ^{26} Mg [‰]
water	1.28 - 1.39	0.09 - 0.25	-2.53 to -1.55
bedrock-bulk	0.60 - 0.87	0.10 - 0.37	-4.20 to -1.50
bedrock - leach	0.95 - 1.11	0.14 - 0.20	-4.91 to -2.09
soil - bulk	0.82 - 1.12	0.15 - 0.43	-3.8 to -2.1
soil-leach	1.08 - 1.39	-0.01 - 0.18	-4.55 to -2.66
tufa-bulk	1.14 - 1.22	0.00 - 0.19	-4.26 to -3.25
tufa - leach	1.28 - 1.39	0.00 - 0.14	-4.88 to -3.196

The most feasible combinations of sources of carbonate in tufa barriers estimated using the IsoSource mixing model for partitioning an excess number of sources (EPA)

	Authigenic		Soil-derived		Bedrock-deived	
	234/238 U	$\delta^{ m 88}$ Sr	234/238 U	$\delta^{ m 88}$ Sr	234/238 U	$\delta^{ m 88}$ Sr
K2	80	80	13	12	7	8
K3	82	82	11	11	7	7
К4	83	81	12	14	5	5
K5A	81	77	13	18	6	6
K5B	69	73	18	19	13	8
K6A	66	72	22	18	12	10
K6B	61	69	28	20	11	11

CO2 accumulation rate in tufa based on calcite precipitation rate and Sr isotope data

Precipitation rate estimated using the diffusion boundary layer (DBL) model (Liu & Dreybrodt 1997) considering the DBL thickness of 50 μ m for turbulent conditions and a thickness of water layer at the cascade of 10 cm

$$R_{calc} = \alpha \cdot ([Ca^{2+}] - [Ca^{2+}]_{eq})$$

Site	Precipitation rate [g m ⁻² yr ⁻¹]	Waterfall area [m²]	Annual CO2 storage [tonnes]	
K2	1540	530	0.36	
К3	1670	4800	3.54	
К4	1760	6300	4.86	– 7.2 t/ha
K5	1720	105000	79.4	
K6	1580	123000	85.5	

Instead of conclusions:

Are isotopes of Mg, Sr and U in fluvial sediments identifiers of authigenic carbonate?

Yes (U) / at least to a certain extent (Sr) /not really in this case (Mg)

Several environmental factors affect the metal distribution, partition and isotope fractionation, in particular hydrogeological situation, precipitation rate, biological (,,vital") effects, seasonality (temperarutre, turbulence and related effects)