Bisphenol A alternatives: transfer from food contact material, fate and human exposure, 1.7.2016-30.6.2020, Ester Heath

Host institutions

University of Antwerp (BE) and Jožef Stefan Institute (SLO)


Supervisor and co-supervisors:

Hugo Neels, Adrian Covaci and Ester Heath


Project in SICRIS

Lead agencies

FWO logo ARRS logo2


Bisphenol-A (BPA) is again at the forefront of research because its restriction has resulted in the use of numerous BPA analogues, e.g., other bisphenols (e.g. BPS and BPF). Whereas BPA is a recognized and rather well studied endocrine disrupting chemical, the other bisphenols have not received sufficient attention until now. Very recent studies have shown that some bisphenols have similar effects to those of BPA and stressed the urgent need to focus on the human health risk assessment of these chemicals. Since bisphenols are used without restriction in various food contact materials (FCMs), they could (easily) migrate in food. Using advanced mass spectrometric-based analytical techniques, we will first characterize the conditions in which bisphenols migrate from FCMs. Then, we will investigate the transformation products (TPs) of bisphenols formed under various stress conditions and the metabolites during in vitro metabolism. The estrogen-like potency of bisphenols and their metabolites/TPs will be tested in vitro. A significant contribution of the project will be the validation of multi-residue methods for the determination of bisphenols and their metabolites/TPs in human urine. These methods could be implemented in public health institutes and employed for monitoring the resulting human exposure. The completion of this unique and innovative project will greatly contribute to knowledge on human exposure and potential risks for public health to these BPA-related chemicals. 

Project results

Final report available here.